Abstract

The heat transfer and pressure drop characteristics of a rotating cooling channel that has an angled trapezoidal cross section and converges from the hub to the tip in both the streamwise and spanwise directions are experimentally investigated. The channel is oriented 120 deg with respect to the direction of rotation to model the geometry of an internal, trailing-edge cooling passage. Both the leading and trailing sides of the channel are divided into three and six regions in the spanwise and streamwise directions, respectively. The copper plate method is used to obtain regionally averaged heat transfer coefficients. The pressure drop is measured using pressure taps placed at the inlet and outlet of the channel. Experiments were conducted with the inlet Reynolds number ranging from 10,000 to 40,000. The rotational speed varies from 0 rpm to 300 rpm, resulting in the highest rotation number of 0.21. The effects of full pin-fins on the heat transfer and pressure drop characteristics are obtained and compared to the smooth surface converging channel results. The impact of the convergence, which causes variations of flow and geometric parameters through the passage, such as aspect ratio, Reynolds number, and rotation number, on the heat transfer coefficients and pressure drop are addressed. Results show that due to the 120 deg channel orientation, the rotation has a positive impact on the leading and trailing surface heat transfer. Furthermore, the convergence decreases the aspect ratio while increasing the Reynolds number. The convergence significantly enhances heat transfer on both the leading and trailing surfaces along the streamwise and spanwise directions. The convergence also reduces the rotation effect in the streamwise direction for a given mass flow rate.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer
,
140
(
11
), p.
113001
. 10.1115/1.4039644
2.
Han
,
J. C.
,
2006
, “
Turbine Blade Cooling Studies at Texas A&M University: 1980-2004
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
2
), pp.
161
187
. 10.2514/1.15403
3.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press, Taylor and Francis
,
New York
.
4.
VanFossen
,
G. J.
,
1982
, “
Heat Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), pp.
268
274
. 10.1115/1.3227275
5.
Brigham
,
B. A.
, and
VanFossen
,
G. J.
,
1984
, “
Length to Diameter Ratio and Row Number Effects in Short Pin-Fin Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
241
244
. 10.1115/1.3239541
6.
Chyu
,
M. K.
,
Siw
,
S. C.
, and
Moon
,
H. K.
,
2009
, “
Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays
,”
ASME Turbo Expo
,
ASME Paper No. GT2009-59814
.
7.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
700
706
. 10.1115/1.3245188
8.
Jubran
,
B. A.
,
Hamdan
,
M. A.
, and
Abdualh
,
R. M.
,
1993
, “
Enhanced Heat Transfer, Missing Pin, and Optimization for Cylindrical Pin-Fin Arrays
,”
ASME J. Heat Transfer
,
115
(
3
), pp.
576
583
. 10.1115/1.2910727
9.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Effects of Varying Streamwise and Spanwise Spacing in Pin-Fin Arrays
,”
ASME Turbo Expo
,
ASME Paper No. GT2012-68127
.
10.
Chyu
,
M. K.
,
Oluyede
,
E. O.
, and
Moon
,
H. K.
,
2007
, “
Heat Transfer on Convective Surfaces With Pin-Fins Mounted in Inclined Angles
,”
ASME Turbo Expo
,
ASME Paper No. GT2007-28138
.
11.
Chyu
,
M. K.
,
1990
, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
926
932
. 10.1115/1.2910502
12.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach
.,
120
(
2
), pp.
362
367
. 10.1115/1.2841414
13.
Xu
,
J.
,
Yao
,
J.
,
Su
,
P.
,
Lei
,
J.
,
Wu
,
J.
, and
Gao
,
T.
,
2017
, “
Heat Transfer and Pressure Loss Characteristics of Pin-Fin With Different Shapes in a Wide Channel
,”
ASME Turbo Expo
,
ASME Paper No. GT2017-63761
.
14.
Nuntakulamarat
,
M.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2020
, “
Heat Transfer and Pressure Drop Measurement in High Aspect Ratio Channels With Circular Pins and Strip Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031019
. 10.1115/1.4045221
15.
Wright
,
M. L.
, and
Gohardani
,
A. S.
,
2009
, “
Effect of the Coolant Ejection in Rectangular and Trapezoidal Trailing-Edge Cooling Passages
,”
AIAA J. Thermophys. Heat Transfer
,
23
(
2
), pp.
316
326
. 10.2514/1.38426
16.
Hwang
,
J. J.
,
Lai
,
D. Y.
, and
Tsia
,
Y. P.
,
1999
, “
Heat Transfer and Pressure Drop in Pin-Fin Trapezoidal Ducts
,”
ASME J. Turbomach
.,
121
(
2
), pp.
264
271
. 10.1115/1.2841310
17.
Lau
,
C. S.
,
Han
,
J. C.
, and
Kim
,
Y. S.
,
1989
, “
Turbulent Heat Transfer and Friction in Pin-Fin Channels With Lateral Flow Ejection
,”
ASME J. Heat Transfer
,
111
(
1
), pp.
51
58
. 10.1115/1.3250657
18.
Kumaran
,
T. K.
,
Han
,
J. C.
, and
Lau
,
C. S.
,
1991
, “
Augmented Heat Transfer in a Pin Fin Channel With Short or Long Ejection Holes
,”
Int. J. Heat Mass Transfer
,
34
(
10
), pp.
2617
2628
. 10.1016/0017-9310(91)90101-J
19.
Willet
,
F. T.
, and
Bergles
,
A. E.
,
2002
, “
Heat Transfer in Rotating Narrow Rectangular Pin-Fin Ducts
,”
Exp. Therm. Fluid. Sci.
,
25
(
7
), pp.
573
582
. 10.1016/S0894-1777(01)00103-0
20.
Wright
,
M. L.
,
Lee
,
E.
, and
Han
,
J. C.
,
2004
, “
Effect of Rotation on Heat Transfer in Rectangular Channels With Pin Fins
,”
AIAA J. Thermophys. Heat Transfer
,
18
(
2
), pp.
263
272
. 10.2514/1.4723
21.
Wright
,
M. L.
,
Liu
,
Y. H.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071707
. 10.1115/1.2907437
22.
Liu
,
Y. H.
,
Huh
,
M.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2009
, “
Heat Transfer in Trailing-Edge Channels With Slot Ejection Under High Rotation Numbers
,”
AIAA J. Thermophys. Heat Transfer
,
23
(
2
), pp.
305
315
. 10.2514/1.37982
23.
Tao
,
Z.
,
Qiu
,
L.
, and
Deng
,
H.
,
2015
, “
Heat Transfer in a Rotating Smooth Wedge-Shaped Channel With Lateral Fluid Extraction
,”
Appl. Therm. Eng.
,
87
, pp.
47
55
. 10.1016/j.applthermaleng.2015.04.073
24.
Qiu
,
L.
,
Deng
,
H.
, and
Tao
,
Z.
,
2013
, “
Effect of Channel Orientation in a Rotating Smooth Wedge-Shaped Cooling With Lateral Ejection
,”
ASME Turbo Expo
,
ASME Paper No. GT2013-94758
.
25.
Rallabandi
,
A. P.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Pin-Fin Channels Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
. 10.1115/1.4003746
26.
Wu
,
H. W.
,
Zirakzadeh
,
H.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2018
, “
Heat Transfer in a Rib and Pin Roughened Rotating Multipass Channel With Hub Turning Vane and Trailing-Edge Slot Ejection
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021011
. 10.1115/1.4037584
27.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S. W.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,”
ASME Turbo Expo
,
ASME Paper No. 86-GT-132
.
28.
Sahin
,
I.
,
Chen
,
A. F.
,
Shiau
,
C. C.
,
Han
,
J. C.
, and
Krewinkel
,
R. J.
,
2019
, “
Effect of 45-Deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio From 4:1 to 2:1
,”
ASME J. Turbomach.
,
142
(
7
), p.
071003
. https://doi.org/10.1115/1.4046492
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
30.
Su
,
G.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2007
, “
Computation of Flow and Heat Transfer in Rotating Rectangular Channels (AR = 4:1) With Pin-Fins by a Reynolds Stress Turbulence Model
,”
ASME J. Heat Transfer
,
129
(
6
), pp.
685
696
. 10.1115/1.2717935
You do not currently have access to this content.