Abstract

With the increase of turbine inlet temperature and the application of premixed combustion, turbine components, particularly the turbine endwall, work in a harsh environment and must be effectively cooled to ensure the component durability. Recently, new cooling schemes that employ both external film cooling and internal jet impingement cooling have drawn much attention due to their extraordinary performance. In this study, a numerical model of turbine endwall with jet impingement and film cooling was established and validated against the experiment. To investigate the effects of geometric parameters related to this cooling scheme, four parameters including impingement hole-to-hole pitch Pi, impingement hole diameter Di, impingement channel height H, and film hole diameter Df were selected to adjust within a reasonable range. The uniform design method was used to collect a database that represented the design space formed by the four parameters. Performance criteria including area-averaged overall cooling effectiveness, standard deviation of overall cooling effectiveness, and total pressure drop coefficient of the cooling system were evaluated through computational fluid dynamics (CFD) calculations. To explore and exploit the design space, a Kriging model was built from the database. Analysis of variance (ANOVA) was conducted afterward to investigate the main effect of each parameter and the correlation between parameters. Finally, based upon the knowledge obtained from ANOVA, typical designs were selected which yielded either best or poorest performances. Through detailed analysis of flow and heat transfer mechanisms of these designs, the influence of each parameter was illustrated clearly and suggestions for the design of similar cooling schemes were drawn.

References

1.
Mensch
,
A.
,
2015
,
Using Conjugate Heat Transfer to Assess the Cooling Performance on a Turbine Endwall
,
Pennsylvania State University
,
University Park
.
2.
Mouzon
,
B. D.
,
Terrell
,
E. J.
,
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,”
ASME Turbo Expo 2005: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers Digital Collection
, pp.
825
832
.
3.
Nathan
,
M. L.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2014
, “
Adiabatic and Overall Effectiveness for the Showerhead Film Cooling of a Turbine Vane
,”
ASME J. Turbomach.
,
136
(
3
), p.
031005
.
4.
Hollworth
,
B. R.
, and
Dagan
,
L.
,
1980
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface—Part 1: Average Heat Transfer
,”
J. Eng. Power
,
102
(
4
), pp.
994
999
.
5.
Hollworth
,
B. R.
,
Lehmann
,
G.
, and
Rosiczkowski
,
J.
,
1983
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface—Part 2: Local Heat Transfer
,”
J. Eng. Power
,
105
(
2
), pp.
393
402
.
6.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
7.
Sweeney
,
P. C.
, and
Rhodes
,
J. F.
,
1999
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J Turbomach
,
122
(
1
), pp.
170
177
.
8.
Mensch
,
A.
, and
Thole
,
K. A.
,
2016
, “
Overall Effectiveness and Flowfield Measurements for an Endwall With Nonaxisymmetric Contouring
,”
ASME J. Turbomach.
,
138
(
3
), p.
031007
.
9.
Mensch
,
A.
, and
Thole
,
K. A.
,
2015
, “
Conjugate Heat Transfer Analysis of the Effects of Impingement Channel Height for a Turbine Blade Endwall
,”
Int. J. Heat Mass Transf.
,
82
, pp.
66
77
.
10.
Mensch
,
A.
, and
Thole
,
K.
,
2015
, “
Simulations of Multiphase Particle Deposition on a Gas Turbine Endwall With Impingement and Film Cooling
,”
ASME J. Turbomach.
,
137
(
11
), p.
111002
.
11.
Mensch
,
A.
, and
Thole
,
K. A.
,
2014
, “
Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031901
.
12.
Mensch
,
A. E.
, and
Thole
,
K. A.
,
2016
, “
Effects of Non-Axisymmetric Endwall Contouring and Film Cooling on the Passage Flowfield in a Linear Turbine Cascade
,”
Exp. Fluids
,
57
(
1
), p.
1
.
13.
Mensch
,
A.
,
Thole
,
K. A.
, and
Craven
,
B. A.
,
2014
, “
Conjugate Heat Transfer Measurements and Predictions of a Blade Endwall With a Thermal Barrier Coating
,”
ASME J. Turbomach.
,
136
(
12
), p.
121003
.
14.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2018
, “
Influence of Coolant Mass Flow Rate on the Endwall Conjugate Heat Transfer
,”
Int. J. Therm. Sci.
,
129
, pp.
416
425
.
15.
Li
,
M.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Overall Cooling Effectiveness Characteristic and Influence Mechanism on an Endwall With Film Cooling and Impingement
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
American Society of Mechanical Engineers Digital Collection
.
16.
Li
,
X.
,
Li
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Heat Transfer Measurements of Vane Endwall With Film Cooling and Impingement Cooling
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
.
17.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Experimental Investigation of Endwall Heat Transfer With Film and Impingement Cooling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
101901
.
18.
Su
,
H.
,
Pu
,
J.
,
Wang
,
J.
,
Yuan
,
R.
,
Luan
,
Y.
, and
Kang
,
B.
,
2018
, “
An Experimental Investigation of Cooling Characteristics at a Vane End-Wall With a Locally Enhanced Hole-Layout
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
137
145
.
19.
Wang
,
W.
,
Pu
,
J.
,
Wang
,
J.
,
Wu
,
W.
, and
Wang
,
M.
,
2019
, “
An Experimental Investigation on Cooling Characteristics of a Vane Laminated End-Wall With Axial-Row Layout of Film-Holes
,”
Appl. Therm. Eng.
,
148
, pp.
953
962
.
20.
Wang
,
W.
,
Pu
,
J.
,
Yuan
,
R.
,
Wang
,
J.
,
Luan
,
Y.
, and
Kang
,
B.
,
2017
, “
An Experimental Investigation on the Overall Cooling Performances of Two Turbine End-Wall Structures
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
21.
Wang
,
X.
,
Xu
,
H.
,
Wang
,
J.
,
Song
,
W.
, and
Wang
,
M.
,
2019
, “
Multi-objective Optimization of Discrete Film Hole Arrangement on a High Pressure Turbine End-Wall With Conjugate Heat Transfer Simulations
,”
Int. J. Heat Fluid Flow
,
78
, p.
108428
.
22.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
23.
Yang
,
X.
,
Liu
,
Z.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z.
,
Guo
,
F.
,
Ding
,
L.
, and
Simon
,
T. W.
,
2019
, “
Experimental and Numerical Investigations of Overall Cooling Effectiveness on a Vane Endwall With Jet Impingement and Film Cooling
,”
Appl. Therm. Eng.
,
148
, pp.
1148
1163
.
24.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
25.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
4
), pp.
866
874
.
26.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
J. Eng. Power
,
99
(
1
), pp.
21
28
.
27.
Wang
,
S.
,
Sun
,
H.
,
Di
,
J.
,
Mao
,
J.
,
Li
,
J.
, and
Cai
,
L.
,
2014
, “
High-Resolution Measurement and Analysis of the Transient Secondary Flow Field in a Turbine Cascade
,”
Proc. Inst. Mech. Eng. Part J. Power Energy
,
228
(
7
), pp.
799
812
.
28.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
.
29.
Roosen
,
C. B.
,
1995
,
Visualization and Exploration of High-Dimensional Functions Using the Functional ANOVA Decomposition
,
Stanford University
,
Stanford, CA
.
30.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2002
, “
NIST Reference Fluid Thermodynamic and Transport Properties–REFPROP
,”
NIST Stand. Ref. Database
,
23
, p.
v7
.
31.
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2005
, “
Numerical Simulation of Unsteady Wake/Blade Interactions in Low-Pressure Turbine Flows Using an Intermittency Transport Equation
,”
ASME J. Turbomach.
,
127
(
3
), pp.
431
444
.
32.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2009
, “
Heat Transfer for a Turbine Blade With Non-axisymmetric Endwall Contouring
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, pp.
887
898
.
33.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
.
34.
Zhu
,
P.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Effects of Upstream Slot Geometry on the Endwall Aerothermal Performance of a Gas Turbine Blade Under Different Ejection Angle Conditions
,”
Int. J. Heat Mass Transf.
,
115
, pp.
652
669
.
35.
Liao
,
X.
,
Xiao
,
L.
,
Yang
,
C.
, and
Lu
,
Y.
,
2014
, “
MilkyWay-2 Supercomputer: System and Application
,”
Front. Comput. Sci.
,
8
(
3
), pp.
345
356
.
36.
Crawford
,
M. E.
,
2009
,
TEXSTAN (Academic Version)
,
University of Texas
,
Austin, TX
.
37.
Fang
,
K.
,
Liu
,
M.-Q.
,
Qin
,
H.
, and
Zhou
,
Y.-D.
,
2018
,
Theory and Application of Uniform Experimental Designs
,
Springer
,
New York
.
38.
Yang
,
X.
,
Liu
,
Z.
,
Liu
,
Z.
,
Simon
,
T.
, and
Feng
,
Z.
,
2019
, “
Endwall Film Cooling Performance for a First-Stage Guide Vane With Upstream Combustor Walls and Inlet Injection
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011008
.
39.
Couckuyt
,
I.
,
Dhaene
,
T.
, and
Demeester
,
P.
,
2014
, “
OoDACE Toolbox: A Flexible Object-Oriented Kriging Implementation
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
3183
3186
.
40.
Gilbert
,
J. C.
,
2009
, “
SQPLab—A Matlab Software for Solving Nonlinear Optimization Problems and Optimal Control Problems
,” INRIA-Rocquencourt, France (February 2009).
41.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
,
1992
, “
Screening, Predicting, and Computer Experiments
,”
Technometrics
,
34
(
1
), pp.
15
25
.
You do not currently have access to this content.