Abstract

The effects of mainstream flow velocity, density ratio (DR), and coolant-to-mainstream mass flow ratio (MFR) on a vane endwall in a transonic, annular cascade were investigated. A blow down facility consisting of five vanes was used. The film cooling effectiveness was measured using binary pressure-sensitive paint (BPSP). The mainstream flow was set using isentropic exit Mach numbers of 0.7 and 0.9. The coolant-to-mainstream density ratio varied from 1.0 to 2.0. The coolant-to- mainstream MFR varied from 0.75% to 1.25%. The endwall was cooled by 18 discrete holes located upstream of the vane passage to provide cooling to the upstream half of the endwall. Due to the curvature of the vane endwall, the upstream holes provided uniform coverage entering the endwall passage. The coverage was effective leading to the throat of the passage, where the downstream holes could provide additional protection. Increasing the coolant flowrate increased the effectiveness provided by the film cooling holes. Increasing the density of the coolant increases the effectiveness on the endwall while enhancing the lateral spread of the coolant. Finally, increasing the velocity of the mainstream while holding the MFR constant also yields increased protection on the endwall. Over the range of flow conditions considered in this study, the binary pressure-sensitive paint proved to be a valuable tool for obtaining detailed pressure and film effectiveness distributions.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
New York
, p.
869
.
2.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
. 10.2514/1.16344
3.
Chyu
,
M. K.
,
2006
, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
27
36
. 10.1111/j.1749-6632.2001.tb05840.x
4.
Wright
,
L. M.
,
Malak
,
M. F.
,
Crites
,
D. C.
,
Morris
,
M. C.
,
Yelavkar
,
V.
, and
Bilwani
,
R.
,
2014
, “
Review of Platform Cooling Technology for High Pressure Turbine Blades
,”
ASME Paper No. GT2014-26373
.
5.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
(
4
), pp.
866
874
. 10.1115/1.3230352
6.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
. 10.1115/1.3262089
7.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4A
), pp.
862
869
. 10.1115/1.3250586
8.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwall
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
. 10.1115/1.3450239
9.
Wright
,
L. M.
,
Gao
,
Z.
,
Yang
,
H.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071702
. 10.1115/1.2907440
10.
Wright
,
L. M.
,
Blake
,
S.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Hole Flows
,”
ASME J. Turbomach.
,
130
(
3
), p.
031015
. 10.1115/1.2777186
11.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J. C.
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
. 10.1115/1.3068327
12.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
,
2003
, “
Combustor-Turbine Interface Studies: Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
202
. 10.1115/1.1561811
13.
Zess
,
G. A.
, and
Thole
,
K. A.
,
2002
, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME J. Turbomach.
,
124
(
2
), pp.
167
175
. 10.1115/1.1460914
14.
Shih
,
T. I.-P.
, and
Lin
,
Y. L.
,
2003
, “
Controlling Secondary Flow Structure by Leading-Edge Airfoil Fillet and Inlet Swirl to Reduce Aerodynamic Loss and Surface Heat Transfer
,”
ASME J. Turbomach.
,
125
(
1
), pp.
48
56
. 10.1115/1.1518503
15.
Mahmood
,
G. I.
,
Gustefson
,
R.
, and
Acharya
,
S.
,
2005
, “
Experimental Investigation of Flow Structure and Nusselt Number in a Low-Speed Linear Blade Passage With and Without Leading-Edge Fillets
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
499
512
. 10.1115/1.1865218
16.
Lin
,
Y. L.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Bunker
,
R. S.
,
2000
, “
Effects of Gap Leakage on Fluid Flow in a Contoured Turbine Nozzle Guide Vane
,”
ASME Paper No. GT2000-555
.
17.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2007
, “
Measurements of Net Change in Heat Flux as a Result of Leakage and Steps on the Contoured Endwall of a Gas Turbine First Stage Nozzle
,”
J. Appl. Therm. Eng.
,
27
(
4
), pp.
722
730
. 10.1016/j.applthermaleng.2006.10.006
18.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2007
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
,
129
(
4
), pp.
782
790
. 10.1115/1.2720506
19.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Quattrore
,
M.
,
2010
, “
Endwall Film Cooling Effects on Secondary Flows in a Contoured Endwall Nozzle Vane
,”
ASME J. Turbomach.
,
132
(
4
), p.
041005
. 10.1115/1.3192147
20.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Convective Heat Transfer Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041008
. 10.1115/1.4002966
21.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041007
. 10.1115/1.4002965
22.
Rezasoltani
,
M.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2014
, “
Experimental Investigation of the Effect of Purge Flow on Aerodynamic Performance and Film Cooling Effectiveness on a Rotating Turbine With Non-axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
136
(
9
), p.
091009
. 10.1115/1.4027196
23.
Li
,
S. J.
,
Lee
,
J. Y.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2016
, “
Turbine Platform Cooling and Blade Suction Surface Phantom Cooling From Simulated Swirl Purge Flow
,”
ASME J. Turbomach.
,
138
(
8
), p.
081004
. 10.1115/1.4032676
24.
Chowdhury
,
N. H. K.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), p.
061003
. 10.1115/1.4035162
25.
Chen
,
A. F.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2018
, “
Turbine Blade Platform Film Cooling With Fan-Shaped Holes Under Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
140
(
1
), p.
011006
. 10.1115/1.4038150
26.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Lee
,
C. P.
, and
Azad
,
S.
,
2018
, “
Film Effectiveness Comparison on Full-Scale Turbine Vane Endwalls Using PSP Technique
,”
ASME J. Turbomach.
,
140
(
2
), p.
021009
. 10.1115/1.4038278
27.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
. 10.1115/1.4042057
28.
Zhang
,
L.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of Back-Facing Step
,”
ASME Paper No. GT2003-38319
.
29.
Wu
,
P. S.
, and
Lin
,
T. Y.
,
2003
, “
Effects of a Forward Facing Entrance Step on Film Cooling Effectiveness in the Endwall Region of a Vane
,”
Recent Progress in Transport Phenomena
, p.
573
578
.
30.
Harasgama
,
S. P.
, and
Burton
,
C. D.
,
1992
, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Part 1—Experimental Technique and Results
,”
ASME J. Turbomach.
,
114
(
4
), pp.
734
740
. 10.1115/1.2928026
31.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
720
729
. 10.1115/1.1397308
32.
Salvadori
,
S.
,
Ottanelli
,
L.
,
Jonsson
,
M.
,
Ott
,
P.
, and
Martelli
,
F.
,
2012
, “
Investigation of High-Pressure Turbine Endwall Film Cooling Performance Under Realistic Inlet Conditions
,”
AIAA J. Propul. Power
,
28
(
4
), pp.
799
810
. 10.2514/1.B34365
33.
Shiau
,
C. C.
,
Sahin
,
I.
,
Ullah
,
I.
,
Han
,
J. C.
,
Mirzamoghadam
,
A. V.
,
Riahi
,
A.
, and
Stimpson
,
C.
,
2019
, “
Transonic Turbine Vane Endwall Film Cooling Using PSP Measurement Technique
,”
ASME Paper No. GT2019-91030
.
34.
Zhang
,
L. J.
, and
Fox
,
M.
,
1999
, “
Flat Plate Film Cooling Measurement Using PSP and Gas Chromatograph Techniques
,”
ASME Paper No. AJTE99-6241
.
35.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME Paper No. HT2005-72363
.
36.
Liu
,
T.
, and
Sullivan
,
J. P.
,
2005
,
Pressure and Temperature Sensitive Paints
,
Springer
,
Berlin, Germany
, p.
328
.
37.
Juliano
,
T. J.
,
Peng
,
D.
,
Jenson
,
C.
,
Gregory
,
J. W.
,
Liu
,
T.
,
Montefort
,
J.
,
Palluconi
,
S.
,
Crafton
,
J.
, and
Fonov
,
S.
,
2011
, “
PSP Measurements on an Oscillating NACA 0012 Airfoil in Compressible Flow
,” AIAA Paper No. AIAA2011-3728.
38.
Abdeh
,
H.
,
Miranda
,
M.
,
Rouina
,
S.
, and
Barigozzi
,
G.
,
2017
, “
Development of PSP Technique for Vane Film Cooling Investigations
,”
Energy Procedia
,
126
(
201709
), pp.
802
809
. 10.1016/j.egypro.2017.08.285
39.
Barigozzi
,
G.
,
Mucignat
,
C.
,
Abdeh
,
H.
,
Scandell
,
D.
, and
Dolci
,
G.
,
2018
, “
Assessment of Binary PSP Technique for Film Cooling Effectiveness Measurement on Nozzle Vane Cascade With Cutback Trailing Edge
,”
Exp. Therm. Fluid. Sci.
,
97
, pp.
431
443
. 10.1016/j.expthermflusci.2018.05.015
40.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mechanical Eng.
,
75
, pp.
3
8
.
41.
Goldstein
,
R. G.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
,
7
, pp.
321
379
. 10.1016/S0065-2717(08)70020-0
You do not currently have access to this content.