Abstract

Ceramic matrix composites (CMCs) are quickly becoming more prevalent in the design of gas turbines due to their advantageous weight and thermal properties. While there are many advantages, the CMC surface morphology differs from that of conventional cast airfoil components. Despite a great deal of research focused on the material properties of CMCs, little public work has been done to investigate the impact that the CMC surface morphology has on the boundary layer development and resulting heat transfer. In this study, a scaled-up CMC weave pattern was developed and tested in a low-speed wind tunnel to evaluate both heat transfer and boundary layer characteristics. Results from these experiments indicate that the CMC weave pattern results in augmented heat transfer and flow field properties that significantly vary locally when compared with a smooth surface.

References

1.
Walock
,
M. J.
,
Heng
,
V.
,
Nieto
,
A.
,
Ghoshal
,
A.
,
Murugan
,
M.
, and
Driemeyer
,
D.
,
2018
, “
Ceramic Matrix Composite Materials for Engine Exhaust Systems on Next-Generation Vertical Lift Vehicles
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102101
. 10.1115/1.4040011
2.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
. 10.1038/nmat4687
3.
Cinibulk
,
M. K.
,
Apostolov
,
Z. D.
,
Boakye
,
E. E.
,
Key
,
T. S.
, and
King
,
D. S.
,
2018
, “
Constituent Development for Higher-Temperature Capable Ceramic Matrix Composites
,”
Proceedings of the ASME Turbo Expo
,
Oslo, Norway
,
June 11–15
,
Paper No. GT2018-76835
.
4.
Alvin
,
M.
,
Anderson
,
I.
,
Heidloffm
,
A.
,
White
,
E.
,
Bhatt
,
R.
,
Grady
,
J.
,
McMordie
,
B.
, and
Warnes
,
B.
,
2015
, “
Development of Advanced Material Systems for Future Gas Turbine Applications
,”
Proceedings of ASME Turbo Expo
,
Montréal, Canada
,
June 15–19
,
Paper No. GT2015-43456
.
5.
Presby
,
M. J.
,
Nesredin
,
K.
,
Sanchez
,
L. J.
,
Faucett
,
D. C.
,
Choi
,
S. R.
, and
Morscher
,
G. N.
,
2019
, “
Life-Limiting Behavior of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature Subject to Foreign Object Damage
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031012
. 10.1115/1.4041145
6.
Zhu
,
D.
,
2018
,
Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications, NASA/TM—2018-219884
.
7.
Watanabe
,
F.
,
Nakamura
,
T.
, and
Mizokami
,
Y.
,
2017
, “
Design and Testing for Ceramic Matrix Composite Turbine Vane
,”
Proceedings of ASME Turbo Expo
,
Charlotte, NC
,
June 26–30
,
Paper No. GT2017-63264
.
8.
Watanabe
,
F.
,
Nakamura
,
T.
, and
Shinohara
,
K. I.
,
2016
, “
The Application of Ceramic Matrix Composite to Low Pressure Turbine Blade
,”
Proceedings of the ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
,
Paper No. GT2016-56614
.
9.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
. 10.1115/1.2841411
10.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
. 10.1115/1.3066315
11.
Bons
,
J. P.
, and
McClain
,
S. T.
,
2004
, “
The Effect of Real Turbine Roughness With Pressure Gradient on Heat Transfer
,”
ASME J. Turbomach.
,
126
(
3
), pp.
385
394
. 10.1115/1.1738120
12.
Buckles
,
J.
,
Hanratty
,
T. J.
, and
Adrian
,
R. J.
,
1984
, “
Turbulent Flow Over Large-Amplitude Wavy Surfaces
,”
J. Fluid Mech.
,
140
, pp.
27
44
. 10.1017/S0022112084000495
13.
Mamori
,
H.
,
Fujimura
,
M.
,
Udagawa
,
S.
,
Iwamoto
,
K.
,
Murata
,
A.
,
Kaqaguchi
,
Y.
,
Ando
,
H.
,
Kawashima
,
H.
, and
Mieno
,
H.
,
2018
, “
Effect of Wavelength of Sinusoidal Wavy Wall Surface on Drag and Heat Transfer at Turbulent Thermal Boundary Layer Flow
,”
J. Therm. Sci. Technol.
,
13
(
2
), pp.
1
11
. 10.1299/jtst.2018jtst0023
14.
Busse
,
A.
,
Thakkar
,
M.
, and
Sandham
,
N. D.
,
2017
, “
Reynolds-Number Dependence of the Near-Wall Flow Over Irregular Rough Surfaces
,”
J. Fluid Mech.
,
810
, pp.
196
224
. 10.1017/jfm.2016.680
15.
Prokein
,
D.
,
von Wolfersdorf
,
J.
,
Dittert
,
C.
, and
Böhrk
,
H.
,
2018
, “
Transpiration Cooling Experiments on a CMC Wall Segment in a Supersonic Hot Gas Channel
,”
International Energy Conversion Engineering Conference
,
Cincinnati, OH
,
July 9–11
,
Paper No. AIAA 2018-4696
.
16.
Zhong
,
F.
, and
Brown
,
G. L.
,
2009
, “
Experimental Study of Multi-Hole Cooling for Integrally-Woven, Ceramic Matrix Composite Walls for Gas Turbine Applications
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
971
985
. 10.1016/j.ijheatmasstransfer.2008.08.008
17.
Krishna
,
K.
,
Ricklick
,
M. A.
,
Poinsatte
,
P.
, and
Thurman
,
D.
,
2016
, “
Preliminary Investigation of an Oblique Jet Impingement Cooling on CMC Rough Surface
,”
52nd AIAA/SAE/ASEE Joint Propulsion Conference
,
Salt Lake City, UT
,
July 25–27
,
Paper No. AIAA 2016-4851
.
18.
Krishna
,
K.
, and
Ricklick
,
M.
,
2017
, “
Heat Transfer Analysis of Jet Impingement Cooling on a Simulated Ceramic Matrix Composite Surface
,”
Proceedings of the ASME Turbo Expo
,
Charlotte, NC
,
June 26–30
, Paper No. GT2017-64991.
19.
Sherburn
,
M.
,
2007
, “
Geometric and Mechanical Modelling of Textiles
,”
Ph.D. dissertation
,
University of Nottingham
.
20.
Nemeth
,
N. N.
,
Mital
,
S. K.
, and
Lang
,
J.
,
2010
,
Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites, NASA/TM—2010-216250
.
21.
Barbero
,
E. J.
,
2010
,
Introduction to Composite Materials Design
,
CRC Press LLC
,
Boca Raton, FL
.
22.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2014
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
. 10.1115/1.4025574
23.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
146
155
. 10.1016/S0142-727X(99)00076-4
24.
Wittig
,
S.
,
Schulz
,
A.
,
Gritsch
,
M.
, and
Thole
,
K. A.
,
1996
, “
Transonic Film-Cooling Investigations: Effects of Hole Shapes and Orientations
,”
Proceedings of the ASME Turbo Expo
,
Birmingham, UK
,
June 10–13
, Paper No. 96-GT-222.
25.
2015
, “
Hot Disk Thermal Constants Analyser Instruction Manual
,”
Hot Disk AB
,
Gothenburg, Sweden
.
26.
1994
, “
Model 9800 Series Fiberoptic Probes
,”
TSI Incorporated
,
Shoreview, MN
.
27.
2017
, “
Phase Doppler Particle Analyzer (PDPA)/Laser Doppler Velocimeter (LDV)
,”
TSI Incorporated, Shoreview, MN
.
28.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
J. Fluids Eng. Trans. ASME
,
104
(
2
), pp.
250
258
. 10.1115/1.3241818
29.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
,
Theory and Design for Mechanical Measurements
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
30.
Colban
,
W.
,
Gratton
,
A.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2006
, “
Heat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
128
(
1
), pp.
53
61
. 10.1115/1.2098789
31.
Skote
,
M.
, and
Henningson
,
D. S.
,
2002
, “
Direct Numerical Simulation of a Separated Turbulent Boundary Layer
,”
J. Fluid Mech.
,
471
, pp.
107
136
. 10.1017/S0022112002002173
32.
Coleman
,
G. N.
,
Rumsey
,
C. L.
, and
Spalart
,
P. R.
,
2018
, “
Numerical Study of Turbulent Separation Bubbles With Varying Pressure Gradient and Reynolds Number
,”
J. Fluid Mech.
,
847
, pp.
28
70
. 10.1017/jfm.2018.257
33.
Kitsios
,
V.
,
Sekimoto
,
A.
,
Atkinson
,
C.
,
Sillero
,
J. A.
,
Borrell
,
G.
,
Gungor
,
A. G.
,
Jiménez
,
J.
, and
Soria
,
J.
,
2017
, “
Direct Numerical Simulation of a Self-Similar Adverse Pressure Gradient Turbulent Boundary Layer at the Verge of Separation
,”
J. Fluid Mech.
,
829
, pp.
392
419
. 10.1017/jfm.2017.549
You do not currently have access to this content.