Abstract

In the current study, the heat transfer and pressure drop characteristics of a rotating, partial pin-finned, cooling channel that has a trapezoidal cross section and converges from the hub to tip in both the streamwise and spanwise directions are experimentally investigated. To model the geometry of an internal trailing edge cooling passage, the channel is oriented with respect to the direction of rotation (β = 120 deg). Isolated copper plates are used to obtain regionally averaged heat transfer coefficients on the leading and trailing surfaces. Pressure drop is measured using pressure taps placed at the inlet and outlet of the channel. Utilizing Dp = 5 mm diameter pins, a staggered array is created. For this array, the streamwise pin-spacing, Sy/Dp = 2.1, was kept constant; however, the spanwise pin-spacing, Sx/Dp, was varied from the hub to tip between 3 and 2.6 due to the channel convergence. Experiments were conducted for two partial pin-fin sets having pin length-to-diameter ratios of Sz/Dp = 0.4 and 0.2. The rotation number was varied from 0 to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300 rpm. A significant decrease in pressure loss and a slight reduction in heat transfer enhancement are observed with the use of partial pin-fins compared with the previously reported full pin-fin converging channel study. This provides better thermal performances of the partial pin-fin arrays compared with the full pin-fin array, in the converging channels.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2002
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press, Taylor and Francis
,
New York
.
2.
Brun
,
K.
, and
Kurz
,
R.
,
2019
,
Intoducion to Gas Turbine Theory
, 3rd ed.,
Solar Turbines Incorporated
,
USA
.
3.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat. Transfer.
,
104
(
4
), pp.
700
706
. 10.1115/1.3245188
4.
Chyu
,
M. K.
,
Siw
,
S. C.
, and
Moon
,
H. K.
,
2009
, “
Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer from Staggered Pin-Fin Arrays
,”
ASME Turbo Expo 2009
,
Paper No. GT2009-59814
. 10.1115/gt2009-59814
5.
VanFossen
,
G. J.
,
1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
J. Eng. Power
,
104
(
2
), pp.
268
274
. 10.1115/1.3227275
6.
Lau
,
S. C.
,
Kim
,
Y. S.
, and
Han
,
J. C.
,
1987
, “
Local Endwall Heat/Mass-Transfer Distributions in Pin Fin Channels
,”
J. Thermophys. Heat. Transfer.
,
1
(
4
), pp.
365
372
. 10.2514/3.53
7.
Chyu
,
M. K.
, and
Goldstein
,
R. J.
,
1991
, “
Influence of An Array of Wall-Mounted Cylinders on the Mass Transfer From a Flat Surface
,”
Int. J. Heat. Mass. Transfer.
,
34
(
9
), pp.
2175
2186
. 10.1016/0017-9310(91)90044-F
8.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I. -P.
, and
Natarajan
,
V.
,
1999
, “
Heat Transfer Contributions of Pins and Endwall in Pin-fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
(
2
), pp.
257
263
. 10.1115/1.2841309
9.
Ames
,
F. E.
,
Dvorak
,
L. A.
, and
Morrow
,
M. J.
,
2005
, “
Turbulent Augmentation of Internal Convection Over Pins in Staggered-Pin Fin Arrays
,”
ASME J. Turbomach.
,
127
(
1
), pp.
183
190
. 10.1115/1.1811090
10.
Ames
,
F. E.
, and
Dvorak
,
L. A.
,
2005
, “
Turbulent Transport in Pin Fin Arrays: Experimental Data and Predictions
,”
ASME J. Turbomach.
,
128
(
1
), pp.
71
81
. 10.1115/1.2098792
11.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Flowfield Measurements in a Single Row of Low Aspect Ratio Pin Fins
,”
ASME J. Turbomach.
,
134
(
5
), p.
051034
. 10.1115/1.4004755.
12.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
362
367
. 10.1115/1.2841414
13.
Uzol
,
O.
, and
Camci
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat. Transfer.
,
127
(
5
), pp.
458
471
. 10.1115/1.1860563
14.
Nuntakulamarat
,
M.
,
Shiau
,
C.-C.
, and
Han
,
J.-C.
,
2019
, “
Heat Transfer and Pressure Drop Measurements in a High Aspect Ratio Channel With Circular Pins and Strip Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031019
. 10.1115/1.4045221
15.
Steuber
,
G. D.
, and
Metzger
,
D. E.
,
1986
, “
Heat Transfer and Pressure Loss Performance for Families of Partial Length Pin Fin Arrays in High Aspect Ratio Rectangular Ducts
,”
Heat Transfer 1986; Proceedings of the Eighth International Conference
,
San Francisco, CA
.
16.
Arora
,
S. C.
, and
Abdel-Messeh
,
W.
,
1990
, “
Characteristics of Partial Length Circular Pin Fins As Heat Transfer Augmentors for Airfoil Internal Cooling Passages
,”
ASME J. Turbomach.
,
112
(
3
), pp.
559
565
. 10.1115/1.2927694
17.
Wright
,
L. M.
,
Liu
,
Y. -H.
,
Han
,
J. -C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat. Transfer.
,
130
(
7
), pp.
263
272
.071701
18.
Liu
,
Y.-H.
,
Huh
,
M.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2009
, “
Heat Transfer in Trailing-Edge Channels With Slot Ejection Under High Rotation Numbers
,”
J. Thermophys. Heat. Transfer.
,
23
(
2
), pp.
305
315
. 10.2514/1.37982
19.
Rallabandi
,
A. P.
,
Liu
,
Y. -H.
, and
Han
,
J. -C.
,
2011
, “
Heat Transfer in Trailing Edge Wedge-Shaped Pin-Fin Channels With Slot Ejection Under High Rotation Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021007
. 10.1115/1.4003746.
20.
Brown
,
A.
,
Mandjikas
,
B.
, and
Mudyiwa
,
J. M.
,
1980
, “
Blade Trailing Edge Heat Transfer
,”
ASME
Paper No. 80-GT-45
. 10.1115/80-gt-45
21.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S. W.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,”
ASME Turbo Expo
,
Paper No. 86-GT-132
. 10.1115/86-gt-132
22.
Sahin
,
I.
,
Chen
,
I.-L.
,
Wright
,
L. M.
,
Han
,
J.-C.
,
Xu
,
H.
, and
Fox
,
M.
,
2020
, “
Heat Transfer in Rotating, Trailing Edge, Converging Channels With Smooth and Pin-Fins
,”
ASME Turbo Expo
,
ASME Paper No. GT2020-14440
.
23.
Sahin
,
I.
,
Chen
,
A.
,
Shiau
,
C.-C.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2020
, “
Effect of 45-deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio From 4:1 to 2:1
,”
ASME J. Turbomach.
,
142
(
7
), p.
071003
. 10.1115/1.4046492
24.
Han
,
J. C.
, and
Wright
,
L. M.
,
2020
,
Experimental Methods in Heat Transfer and Fluid Mechanics
, 1st ed.,
CRC Press
,
Taylor and Francis, New York
.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
26.
Asako
,
Y.
, and
Faghri
,
M.
,
1988
, “
Three-dimensional Laminar Heat Transfer and Fluid Flow Characteristics in the Entrance Region of a Rhombic Duct
,”
ASME J. Heat. Transfer.
,
110
(
4a
), pp.
855
861
. 10.1115/1.3250585
You do not currently have access to this content.