Abstract
The inverse design method for turbomachinery can directly acquire a blade geometry with specific aerodynamic parameters, such as pressure loading on the blade surfaces. The difference between the inverse design and direct analysis design is that the management of the flow field is controlled by aerodynamic parameters instead of geometric parameters. Although the inverse design has been studied since the 1940s, it is far from being mature enough in comparison with the analysis method. In this work, the inverse problem method is improved by two aspects: the calculation accuracy and the strategy to determine the pressure loading distribution. The application of a high-quality mesh auto-generation and deformation technique to the inverse design is introduced. The no-slip wall boundary conditions, similar to the analysis model, and high-quality mesh, enable the use of an advanced turbulence model in the inverse design. These methods improve the accuracy of the inverse design. The loading distribution in the inverse design is obtained based on the boundary vorticity flux diagnosis. An axial fan is redesigned as an example of the inverse design method. The internal flow loss analysis based on the entropy production theory verifies the effectiveness of the inverse design used in this study.