Abstract

The inverse design method for turbomachinery can directly acquire a blade geometry with specific aerodynamic parameters, such as pressure loading on the blade surfaces. The difference between the inverse design and direct analysis design is that the management of the flow field is controlled by aerodynamic parameters instead of geometric parameters. Although the inverse design has been studied since the 1940s, it is far from being mature enough in comparison with the analysis method. In this work, the inverse problem method is improved by two aspects: the calculation accuracy and the strategy to determine the pressure loading distribution. The application of a high-quality mesh auto-generation and deformation technique to the inverse design is introduced. The no-slip wall boundary conditions, similar to the analysis model, and high-quality mesh, enable the use of an advanced turbulence model in the inverse design. These methods improve the accuracy of the inverse design. The loading distribution in the inverse design is obtained based on the boundary vorticity flux diagnosis. An axial fan is redesigned as an example of the inverse design method. The internal flow loss analysis based on the entropy production theory verifies the effectiveness of the inverse design used in this study.

References

1.
Thompkins
,
W. T.
, and
Tong
,
S. S.
,
1982
, “
Inverse or Design Calculations for Nonpotential Flow in Turbomachinery Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
104
(
2
), pp.
281
285
. 10.1115/1.3227277
2.
Yang
,
T. T.
, and
Ntone
,
F.
,
1986
, “
Viscous compressible flow direct and inverse computation and illustrations
,”
NASA Report No. CR-175037
.
3.
Mileshin
,
V. I.
,
Orekhov
,
I. K.
,
Shchipin
,
S. K.
, and
Startsev
,
A. N.
,
2007
, “
3D Inverse Design of Transonic Fan Rotors Efficient for a Wide Range of RPM
,”
Proceedings of the ASME Turbo Expo 2007
,
Montreal, Canada
,
May 14–17
,
ASME
Paper No. GT2007-27817
.
4.
Daneshkhah
,
K.
, and
Ghaly
,
W.
,
2009
, “
An Inverse Design Method for Viscous Flow in Turbomachinery Blading Using a Wall Virtual Movement
,”
Inverse Probl. Sci. Eng.
,
17
(
3
), pp.
381
397
. 10.1080/17415970802404977
5.
Daneshkhah
,
K.
, and
Ghaly
,
W.
,
2007
, “
Aerodynamic Inverse Design for Viscous Flow in Turbomachinery Blading
,”
J. Propul. Power
,
23
(
4
), pp.
814
820
. 10.2514/1.27740
6.
Rooij
,
M. V.
, and
Medd
,
A.
,
2012
, “
Reformulation of a Three-Dimensional Inverse Design Method for Application in a High-Fidelity CFD Environment
,”
Proceedings of the ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
,
ASME
Paper No. GT2012-69891
.
7.
Hield
,
P.
,
2008
, “
Semi-Inverse Design Applied to an Eight Stage Transonic Axial Flow Compressor
,”
Proceedings of the ASME Turbo Expo 2008
,
Berlin, Germany
,
June 9–13
,
ASME
Paper No. GT2008-50430
.
8.
Page
,
J. H.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2014
, “
Inverse Design of 3D Multistage Transonic Fans at Dual Operating Points
,”
ASME J. Turbomach.
,
136
(
4
), p.
041008
. 10.1115/1.4024884
9.
Hawthorne
,
W. R.
,
Wang
,
C.
,
Tan
,
C. S.
, and
McCune
,
J. E.
,
1984
, “
Theory of Blade Design for Large Deflections: Part I—Two-Dimensional Cascade
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
346
353
. 10.1115/1.3239571
10.
Zangeneh
,
M.
,
1994
, “
Inviscid-Viscous Interaction Method for Three-Dimensional Inverse Design of Centrifugal Impellers
,”
ASME J. Turbomach.
,
116
(
2
), pp.
280
290
. 10.1115/1.2928362
11.
Léonard
,
O.
, and
Van den Braembussche
,
R.
,
1992
, “
Design Method for Subsonic and Transonic Cascade With Prescribed Mach Number Distribution
,”
ASME J. Turbomach.
,
114
(
3
), pp.
553
560
. 10.1115/1.2929179
12.
Demeulenaere
,
A.
, and
Van den Braembussche
,
R.
,
1998
, “
Three-Dimensional Inverse Method for Turbomachinery Blading Design
,”
ASME J. Turbomach.
,
120
(
2
), pp.
247
255
. 10.1115/1.2841399
13.
De Vito
,
L.
,
Van den Braembussche
,
R.
, and
Deconinck
,
H.
,
2003
, “
A Novel Two-Dimensional Viscous Inverse Design Method for Turbomachinery Blading
,”
ASME J. Turbomach.
,
125
(
2
), pp.
310
316
. 10.1115/1.1545765
14.
Yang
,
J.
,
Liu
,
Y.
,
Wang
,
X.
, and
Wu
,
H.
,
2017
, “
An Improved Steady Inverse Method for Turbomachinery Aerodynamic Design
,”
Inverse Probl. Sci. Eng.
,
25
(
5
), pp.
633
651
. 10.1080/17415977.2016.1178259
15.
Medd
,
A. J.
,
Dang
,
T. Q.
, and
Larosiliere
,
L. M.
,
2003
, “
3D Inverse Design Loading Strategy for Transonic Axial Compressor Blading
,” Proceedings of the
ASME Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
,
ASME
Paper No. GT2003-38501
.
16.
Ramamurthy
,
R.
, and
Ghaly
,
W.
,
2010
, “
Dual Point Redesign of an Axial Compressor Airfoil Using a Viscous Inverse Design Method
,” Proceedings of the
ASME Turbo Expo 2010
,
Glasgow, UK
,
June 14–18
,
ASME
Paper No. GT2010-23400
.
17.
Roidl
,
B.
, and
Ghaly
,
W.
,
2011
, “
Redesign of a Low Speed Turbine Stage Using a New Viscous Inverse Design Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011009
. 10.1115/1.4000491
18.
Bonaiuti
,
D.
, and
Zangeneh
,
M.
,
2009
, “
On the Coupling of Inverse Design and Optimization Techniques for the Multiobjective, Multipoint Design of Turbomachinery Blades
,”
ASME J. Turbomach.
,
131
(
2
), p.
021014
. 10.1115/1.2950065
19.
Wu
,
J. Z.
,
Ma
,
H. Y.
, and
Zhou
,
M. D.
,
2006
,
Vorticity and Vortex Dynamics
,
Springer
,
Berlin, Heidelberg
.
20.
Wu
,
J. Z.
,
Liu
,
L. Q.
, and
Liu
,
T. S.
,
2018
, “
Fundamental Theories of Aerodynamic Force in Viscous and Compressible Complex Flows
,”
Prog. Aerosp. Sci.
,
99
, pp.
27
63
. 10.1016/j.paerosci.2018.04.002
21.
Xu
,
F.
,
Chen
,
W. L.
,
Bai
,
W. F.
,
Xiao
,
Y. Q.
, and
Ou
,
J. P.
,
2017
, “
Flow Control of the Wake Vortex Street of a Circular Cylinder by Using a Traveling Wave Wall at Low Reynolds Number
,”
Comput. Fluids
,
145
, pp.
52
67
. 10.1016/j.compfluid.2016.11.014
22.
Yang
,
Y.
,
Wu
,
H.
,
Li
,
Q.
,
Zhou
,
S.
, and
Wu
,
J.
,
2008
, “
Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design
,”
ASME J. Fluids Eng.
,
30
(
4
), p.
041102
. 10.1115/1.2903814
23.
Li
,
Q.
,
Wu
,
H.
,
Guo
,
M.
, and
Wu
,
J.
,
2010
, “
Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design—Part II: Methodology and Application of Boundary Vorticity Flux
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011102
. 10.1115/1.4000650
24.
Zhang
,
J. Y.
,
Cai
,
S. J.
,
Li
,
Y. J.
,
Zhou
,
X.
, and
Zhang
,
Y. X.
,
2017
, “
Optimization Design of Multiphase Pump Impeller Based on Combined Genetic Algorithm and Boundary Vortex Flux Diagnosis
,”
J. Hydrodyn, Ser. B
,
29
(
6
), pp.
1023
1034
. 10.1016/S1001-6058(16)60816-8
25.
Yamamoto
,
K.
,
Engel
,
K.
,
Yamamoto
,
K.
, and
Engel
,
K.
,
1997
, “
Multi-block Grid Generation Using an Elliptic Differential Equation
,”
AIAA 35th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
,
AIAA
Paper 97-0201
.
26.
Rendall
,
T. C. S.
, and
Allen
,
C. B.
,
2009
, “
Efficient Mesh Motion Using Radial Basis Functions With Data Reduction Algorithms
,”
J. Comput. Phys.
,
228
(
17
), pp.
6231
6249
. 10.1016/j.jcp.2009.05.013
27.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
041010
. 10.1115/1.3070573
28.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Fl.
,
26
(
4
), pp.
672
680
. 10.1016/j.ijheatfluidflow.2005.03.005
29.
Li
,
Z.
,
Du
,
J.
,
Jemcov
,
A.
,
Ottavy
,
X.
, and
Lin
,
F.
,
2017
, “
A Study of Loss Mechanism in a Linear Compressor Cascade at the Corner Stall Condition
,” Proceedings of the ASME Turbo Expo 2017,
Charlotte, NC
,
June 26–30
,
ASME
Paper No. GT2017-65192
.
You do not currently have access to this content.