Abstract

Heat transfer and aerodynamic performance in worn squealer tip gap of a high-pressure gas turbine stage were numerically investigated. Effects of the starting location of wear and wear depth on tip heat transfer coefficient distributions and stage efficiency were analyzed to evaluate the aero-thermal performance degradations in the gas turbine stage after wear. At three starting locations of wear and five wear depths, flow patterns in worn squealer tip gap of the turbine stage were visualized and compared with the original design case. The results show that the counter-rotating vortex systems in tip cavity, as well as the interactions between leakage vortex and passage vortex, are significantly affected by the degree of wear damage. The starting location of wear and wear depth have pronounced influences on heat transfer and aerodynamic performance in squealer tip gap. After wear, the stage efficiency is decreased by about 0.3–1%, as the wear depth is equal to clearance gap size. In the serious worn case, thermal load on tip cavity floor is increased by about 60%, while the heat transfer on rims is reduced by about 20%. However, compared with the original design case, the area-averaged heat transfer coefficient on shroud is reduced by 5% at most.

References

1.
Abdelmaksoud
,
R.
, and
Wang
,
T.
,
2019
, “
A Numerical Investigation of Air/Mist Cooling Through a Conjugate, Rotating 3D Gas Turbine Blade With Internal, External, and Tip Cooling
,”
Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, ASME Paper No. GT2019-90093.
2.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
. 10.2514/1.11818
3.
Yang
,
H. T.
,
Acharya
,
S.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
, “
Numerical Simulation of Flow and Heat Transfer Past a Turbine Blade With a Squealer-Tip
,”
Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air
, Amsterdam, Netherlands
,
June 3–6
, ASME Paper No. GT2002-30193.
4.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
High Efficiency Cavity Winglets for High Pressure Turbines
,”
Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, ASME Paper No. GT2014-25261.
5.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M. G.
, and
Manwaring
,
S.
,
2007
, “
Experimental Results From Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
ASME J. Turbomach.
,
129
(
4
), pp.
713
723
. 10.1115/1.2720869
6.
Johnston
,
J. R.
,
1987
, “
Performance and Reliability Improvements for Heavy-Duty Gas Turbines
,”
ASME Gas Turbine Conference and Exhibition
,
Anaheim, CA
,
May 31–June 4
, ASME Paper No. 87-GT-24, GE Report No. GER-3571H.
7.
Vass
,
P.
, and
Arts
,
T.
,
2011
, “
Numerical Investigation of High-Pressure Turbine Blade Tip Flows: Analysis of Aerodynamics
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
A7
), pp.
940
953
. 10.1177/0957650911412871
8.
Caloni
,
S.
,
Shahpar
,
S.
, and
Coull
,
J. D.
,
2016
, “
Numerical Investigations of Different Tip Designs for Shroudless Turbine Blades
,”
Proc. Inst. Mech. Eng. Part A
,
230
(
7
), pp.
709
720
. 10.1177/0957650916661459
9.
Acharya
,
S.
,
Yang
,
H. T.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
, “
Numerical Simulation of Film Cooling on the Tip of a Gas Turbine Blade
,”
Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air
, Amsterdam, Netherlands
,
June 3–6
, ASME Paper No. GT2002-30553.
10.
Mumic
,
F.
,
Eriksson
,
D.
, and
Sundén
,
B.
,
2004
, “
On Prediction of Tip Leakage Flow and Heat Transfer in Gas Turbines
,”
Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air
, Vienna, Austria
,
June 14–17
, ASME Paper No. GT2004-53448.
11.
Ghandour
,
M. E.
,
Shatat
,
M. M. E.
, and
Nakamura
,
Y.
,
2012
, “
On the Physics of Vortex Formation at the Tip of a Turbine Blade
,”
Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
, ASME Paper No. GT2012-70128.
12.
Wang
,
J.
,
Sundén
,
B.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2012
, “
Influence of Different Rim Widths and Blowing Ratios on Film Cooling Characteristics for a Blade Tip
,”
ASME J. Heat Transfer
,
134
(
6
), p.
061701
. 10.1115/1.4006017
13.
Li
,
W.
,
Jiang
,
H. M.
,
Zhang
,
Q.
, and
Lee
,
S. W.
,
2014
, “
Squealer Tip Leakage Flow Characteristics in Transonic Condition
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
042601
. 10.1115/1.4025918
14.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2007
, “
Aero-Thermal Investigations of Tip Leakage Flow in Axial Flow Turbines Part II—Effect of Relative Casing Motion
,”
Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air
, Montreal, Canada
,
May 14–17
, ASME Paper No. GT2007-27957.
15.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids
,
46
(
1
), pp.
362
368
. 10.1016/j.compfluid.2010.11.031
16.
Mischo
,
B.
,
Burdet
,
A.
, and
Abhari
,
R. S.
,
2011
, “
Influence of Stator-Rotor Interaction on the Aerothermal Performance of Recess Blade Tips
,”
ASME J. Turbomach.
,
133
(
1
), p.
011023
. 10.1115/1.4001134
17.
Kelly
,
R.
,
Jemcov
,
A.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
Coffman
,
J.
, and
Malak
,
M. F.
,
2017
, “
Very Large Eddy Simulation (VLES) of a Squealer Tipped Axial Turbine Stage
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-64979.
18.
Jeong
,
J. Y.
,
Kim
,
W.
,
Kwak
,
J. S.
, and
Park
,
J. S.
,
2019
, “
Heat Transfer Coefficient and Film Cooling Effectiveness on the Partial Cavity Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071007
. 10.1115/1.4042647
19.
Ledezma
,
G. A.
,
Allen
,
J.
, and
Bunker
,
R. S.
,
2013
, “
An Experimental and Numerical Investigation Into the Effects of Squealer Blade Tip Modifications on Aerodynamic Performance
,”
Proceedings of the ASME 2013 Turbine Blade Tip Symposium and Course Week
,
Hamburg, Germany
,
Sept. 30–Oct. 3
, ASME Paper No. TBTS2013-2004.
20.
Maesschalck
,
C. D.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
. 10.1115/1.4033975
21.
Park
,
J. S.
,
Lee
,
S. H.
,
Kwak
,
J. S.
,
Lee
,
W. S.
, and
Chung
,
J. T.
,
2013
, “
Measurement of Blade Tip Heat Transfer and Leakage Flow in a Turbine Cascade With a Multi-Cavity Squealer Tip
,”
Proceedings of the ASME 2013 Turbine Blade Tip Symposium and Course Week
,
Hamburg, Germany
,
Sept. 30–Oct. 3
, ASME Paper No. TBTS2013-2072.
22.
Kwak
,
J. S.
, and
Han
,
J.-C.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
669
677
. 10.1115/1.1571849
23.
Kwak
,
J. S.
, and
Han
,
J.-C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
. 10.1115/1.1622712
24.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
263
271
. 10.1115/1.555443
25.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2006
, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in a Linear Cascade
,”
ASME J. Turbomach.
,
128
(
2
), pp.
300
309
. 10.1115/1.2137745
26.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
2012
, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,”
ASME J. Turbomach.
,
134
(
2
), p.
021020
. 10.1115/1.4003085
27.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2003
, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
125
(
2
), pp.
267
273
. 10.1115/1.1554411
28.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2016
, “
Turbine Blade Tip Film Cooling With Blade Rotation: Part I—Tip and Pressure Side Coolant Injection
,”
ASME J. Turbomach.
,
138
(
9
), p.
091002
. 10.1115/1.4032672
29.
Cernat
,
B. C.
,
Pátý
,
M.
,
Maesschalck
,
C. D.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part I: Turbine Rainbow Rotor Testing and Numerical Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
. 10.1115/1.4041465
30.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J.-C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
. 10.1115/1.4028745
31.
Ye
,
M. L.
,
He
,
K.
, and
Yan
,
X.
,
2019
, “
Influence of Wear Damages on Aerodynamic and Heat Transfer Performance in Squealer Tip Gap
,”
Appl. Therm. Eng.
,
159
, p.
113976
. 10.1016/j.applthermaleng.2019.113976
32.
Timko
,
L. P.
,
1990
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,” NASA Report, Report No. NASA CR-168289.
33.
ANSYS
,
2007
,
ANSYS CFX-Solver Theory Guide: Version 11.0
,
ANSYS
,
Canonsburg, PA
.
34.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. A
,
210
(
459–470
), pp.
307
357
. 10.1098/rsta.1911.0009
35.
Simone
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K. S.
,
Qureshi
,
I.
, and
Povey
,
T.
,
2012
, “
Analysis on the Effect of a Nonuniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME J. Turbomach.
,
134
(
1
), p.
011012
. 10.1115/1.4003233
36.
Salvadori
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Adami
,
P.
,
Chana
,
K. S.
, and
Castillon
,
L.
,
2011
, “
Aerothermal Study of the Unsteady Flow Field in a Transonic Gas Turbine With Inlet Temperature Distortions
,”
ASME J. Turbomach.
,
133
(
3
), p.
031030
. 10.1115/1.4002421
You do not currently have access to this content.