Abstract

The mechanisms of blade row interaction affecting rotor film cooling are identified to make recommendations for the design of film cooling in the real, unsteady turbine environment. Present design practice makes the simplifying assumption of steady boundary conditions despite intrinsic unsteadiness due to blade row interaction; we argue that if film cooling responds nonlinearly to unsteadiness, the time-averaged performance will then be in error. Nonlinear behavior is confirmed using experimental measurements of flat-plate cylindrical film cooling holes, mainstream unsteadiness causing a reduction in film effectiveness of up to 31% at constant time-averaged boundary condition. Unsteady computations are used to identify the blade row interaction mechanisms in a high-pressure turbine rotor: a “negative jet” associated with the upstream vane wake, and frozen and propagating vane potential field interactions. A quasi-steady model is used to predict unsteady excursions in momentum flux ratio of rotor cooling holes, with fluctuations of at least ±30% observed for all hole locations. Computations with modified upstream vanes are used to vary the relative strength of wake and potential field interactions. In general, both mechanisms contribute to rotor film cooling unsteadiness. It is recommended that the designer should choose a cooling configuration that behaves linearly over the expected unsteady excursions in momentum flux ratio as predicted by a quasi-steady hole model.

References

1.
Dring
,
R.
,
Blair
,
M.
, and
Joslyn
,
H.
,
1980
, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
J. Eng. Power
,
102
(
1
), pp.
81
87
. 10.1115/1.3230238
2.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
. 10.1115/1.2928036
3.
Bunker
,
R.
,
2017
, “
Evolution of Turbine Cooling
,” ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, ASME Paper No. GT2017-63205.
4.
Mehendale
,
A. B.
,
Han
,
J. -C.
,
Ou
,
S.
, and
Lee
,
C.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II—Effect on Film Effectiveness and Heat Transfer
,”
ASME J. Turbomach.
,
116
(
4
), pp.
730
737
. 10.1115/1.2929466
5.
Funazaki
,
K.
,
Yokota
,
M.
, and
Yamawaki
,
S.
,
1997
, “
Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
,
119
(
2
), pp.
292
301
. 10.1115/1.2841112
6.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
. 10.1115/1.4006287
7.
Womack
,
K. M.
,
Volino
,
R. J.
, and
Schultz
,
M. P.
,
2008
, “
Measurements in Film Cooling Flows With Periodic Wakes
,”
ASME J. Turbomach.
,
130
(
4
), p.
041008
. 10.1115/1.2812334
8.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
,
2001
, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
123
(
2
), pp.
214
221
. 10.1115/1.1354621
9.
Ligrani
,
P.
,
Gong
,
R.
,
Cuthrell
,
J.
, and
Lee
,
J.
,
1996
, “
Bulk Flow Pulsations and Film Cooling—II. Flow Structure and Film Effectiveness
,”
Int. J. Heat Mass Transfer
,
39
(
11
), pp.
2283
2292
. 10.1016/0017-9310(95)00287-1
10.
Seo
,
H. J.
,
Lee
,
J. S.
, and
Ligrani
,
P. M.
,
1999
, “
Effects of Bulk Flow Pulsations on Film Cooling From Different Length Injection Holes at Different Blowing Ratios
,”
ASME J. Turbomach.
,
121
(
3
), pp.
542
550
. 10.1115/1.2841349
11.
Abhari
,
R. S.
, and
Epstein
,
A. H.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
(
1
), pp.
63
70
. 10.1115/1.2928279
12.
Abhari
,
R. S.
,
1996
, “
Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
118
(
1
), pp.
123
133
. 10.1115/1.2836593
13.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
,
2008
, “
Experimental Validation of Quasisteady Assumption in Modeling of Unsteady Film-Cooling
,”
ASME J. Turbomach.
,
130
(
1
), p.
011022
. 10.1115/1.2720878
14.
Ligrani
,
P.
,
Gong
,
R.
,
Cuthrell
,
J.
, and
Lee
,
J.
,
1996
, “
Bulk Flow Pulsations and Film Cooling—I. Injectant Behavior
,”
Int. J. Heat Mass Transfer
,
39
(
11
), pp.
2271
2282
. 10.1016/0017-9310(95)00286-3
15.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
. 10.1115/1.4001192
16.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C.
,
Grewe
,
R.
,
Wilson
,
M.
, and
Gunn
,
E.
,
2018
, “
Stall Inception in Low Pressure Ratio Fans
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
, ASME Paper No. T-2018-75153.
17.
Grimshaw
,
S.
,
Pullan
,
G.
, and
Hynes
,
T. P.
,
2016
, “
Modeling Nonuniform Bleed in Axial Compressors
,”
ASME J. Turbomach.
,
138
(
9
), p.
091010
. 10.1115/1.4032845
18.
Rowbury
,
D.
,
Oldfield
,
M.
, and
Lock
,
G.
,
2001
, “
A Method for Correlating the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
(
2
), pp.
258
265
. 10.1115/1.1354137
19.
Day
,
C.
,
Oldfield
,
M.
, and
Lock
,
G.
,
2000
, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
,
29
(
2
), pp.
117
129
. 10.1007/s003489900062
20.
Johnson
,
R.
,
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
,
Kohli
,
A.
, and
Blair
,
M.
,
2009
, “
Experimental Study of the Effects of an Oscillating Approach Flow on Overall Cooling Performance of a Simulated Turbine Blade Leading Edge
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
, ASME Paper No. 2009-GT-60290.
21.
Meyer
,
R.
,
1958
, “
The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines
,”
ASME J. Basic Eng.
,
80
(
7
), pp.
1544
1552
.
22.
Kachel
,
C. E.
, and
Denton
,
J. D.
,
2006
, “
Experimental and Numerical Investigation of the Unsteady Surface Pressure in a Three-Stage Model of an Axial High Pressure Turbine
,”
ASME J. Turbomach.
,
128
(
2
), pp.
261
272
. 10.1115/1.1860378
23.
Denton
,
J. D.
,
2002
, “
The Effects of Lean and Sweep on Transonic Fan Performance
,”
Task Q.
,
6
(
1
), pp.
7
23
.
24.
Oldfield
,
M.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
. 10.1115/1.2752188
25.
O’Dowd
,
D.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
. 10.1115/1.4001236
You do not currently have access to this content.