Abstract

A blade row that is located downstream of a combustor has an extremely high turbulence intensity at the inlet, typically above 10%. The peak turbulent length scale is also high, at around 20% of the chord of the downstream blade row. In a combustor, the turbulence is created by impinging jets in crossflow. This may result in the turbulence being anisotropic in nature. The aim of this paper is to investigate the effect of combustor turbulence on the loss mechanisms which occur in a turbine blade row. The paper has a number of important findings. The combustor turbulence is characterized and is shown to be isotropic in nature. It shows that, when no pressure gradient is present, combustor turbulence increases the loss of a turbulent boundary layer by 22%. The mechanism responsible for this change is shown to be a deep penetration of the turbulence into the boundary layer. It shows that the presence of combustor turbulence increases the profile loss and endwall loss in the turbine cascade studied by 37% and 47%, respectively. The presence of combustor turbulence also introduces a freestream loss resulting in the total loss of the turbine cascade rising by 47%. When these loss mechanisms were applied to the vane alone, of an engine representative high-pressure turbine, it was found to result in a 1.3% reduction in stage efficiency.

References

1.
Zimmerman
,
D. R.
,
1979
, “
Laser Anemometer Measurements at the Exit of a T63-C20 Combustor
,” Report No. NASA CR-159623.
2.
Seasholtz
,
R. G.
,
Oberle
,
L. G.
, and
Weikle
,
D. H.
,
1983
, “
Laser Anemometry for Hot Section Applications
,” Report No. NASA CP-2289, pp.
57
67
.
3.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Levels are High at the Combustor-Turbine Interface
,”
ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, pp.
1371
1390
.
4.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
5.
Ames
,
F. E.
, and
Moffat
,
R. J.
,
1990
, “
Heat Transfer With High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point
,” Report No. HMT-44,
Thermosciences Division of Mechanical Engineering, Stanford University
.
6.
Thole
,
K. A.
, and
Bogard
,
D. G.
,
1995
, “
Enhanced Heat Transfer and Shear Stress due to High Free-Stream Turbulence
,”
ASME J. Turbomach.
,
117
(
3
), pp.
418
424
. 10.1115/1.2835677
7.
Ames
,
F. E.
, and
Plesniak
,
M. W.
,
1997
, “
The Influence of Large-Scale, High-Intensity Turbulence on Vane Aerodynamic Losses, Wake Growth, and the Exit Turbulence Parameters
,”
ASME J. Turbomach.
,
119
(
2
), pp.
182
192
. 10.1115/1.2841100
8.
Ames
,
F. E.
,
1998
, “
Aspects of Vane Film Cooling With High Turbulence, Part II, Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
120
(
4
), pp.
777
784
. 10.1115/1.2841789
9.
Bons
,
J. P.
,
2002
, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
. 10.1115/1.1505851
10.
Stefes
,
B.
, and
Fernholz
,
H. H.
,
2003
, “
Skin Friction and Turbulence Measurements in a Boundary Layer With Zero-Pressure-Gradient Under the Influence of High Intensity Free-Stream Turbulence
,”
Eur. J. Mech. (B/Fluids)
,
23
(
2
), pp.
303
318
. 10.1016/j.euromechflu.2003.08.005
11.
Chowdhury
,
N. H. K.
,
Dey
,
P. K.
, and
Ames
,
F. E.
,
2011
, “
The Influence of Inlet Contraction on Vane Aerodynamic Losses and Secondary Flows With Variable Turbulence and Reynolds Number
,”
ASME Turbo Expo 2011
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
741
750
.
12.
Martin
,
D.
, and
Thorpe
,
S. J.
,
2012
, “
Experiments on Combustor Effusion Cooling Under Conditions of Very High Free-Stream Turbulence
,”
ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15, 2012
, pp.
1001
1013
.
13.
Kingery
,
J. E.
, and
Ames
,
F. E.
,
2016
, “
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
,”
ASME J. Turbomach.
,
138
(
8
), p.
081005
. 10.1115/1.4032677
14.
Hancock
,
P. E.
, and
Bradshaw
,
P. P.
,
1983
, “
The Effect of Free-Stream Turbulence on Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
105
(
3
), pp.
284
289
. 10.1115/1.3240989
15.
Castro
,
I. P.
,
1984
, “
Effects of Free Stream Turbulence on Low Reynolds Number Boundary Layers
,”
ASME J. Fluids Eng.
,
106
(
3
), pp.
298
306
. 10.1115/1.3243119
16.
Thole
,
K. A.
, and
Bogard
,
D. G.
,
1996
, “
High Freestream Turbulence Effects on Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
276
284
. 10.1115/1.2817374
17.
Sharp
,
N.
,
Neuscamman
,
S.
, and
Warhaft
,
Z.
,
2009
, “
Effects of Large-Scale Free Stream Turbulence on a Turbulent Boundary Layer
,”
Phys. Fluids
,
21
(
9
), p.
095105
. 10.1063/1.3225146
18.
Dogan
,
E.
,
Hanson
,
R. E.
, and
Ganapathisubramani
,
B.
,
2016
, “
Interactions of Large-Scale Free-Stream Turbulence With Turbulent Boundary Layers
,”
J. Fluid Mech.
,
802
, pp.
79
107
. 10.1017/jfm.2016.435
19.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
. 10.1016/0142-727X(87)90001-4
20.
Harrison
,
S.
,
1989
, “
The Influence of Blade Stacking on Turbine Loss
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge, UK
.
21.
Harrison
,
S.
,
1990
, “
Secondary Loss Generation in a Linear Cascade of High Turning Turbine Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
618
624
. 10.1115/1.2927702
22.
Denton
,
J.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, pp.
1417
1430
.
23.
Grewe
,
R.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2014
, “
The Effect of Endwall Manufacturing Variations on Turbine Performance
,”
ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
.
24.
Rodríguez-López
,
E.
,
Bruce
,
P. J. K.
, and
Buxton
,
O. R. H.
,
2015
, “
A Robust Post-Processing Method to Determine Skin Friction in Turbulent Boundary Layers From the Velocity Profile
,”
Exp. Fluids
,
56
(
4
). 10.1007/s00348-015-1935-5
25.
Esteban
,
L. B.
,
Dogan
,
E.
,
Rodríguez-López
,
E.
, and
Ganapathisubramani
,
B.
,
2017
, “
Skin-friction Measurements in a Turbulent Boundary Layer Under the Influence of Free-Stream Turbulence
,”
Exp. Fluids
,
58
(
9
), pp.
1
7
. 10.1007/s00348-017-2397-8
26.
Goldstein
,
S.
,
1936
, “
A Note on the Measurement of Total Head and Static Pressure in a Turbulent Stream
,”
Proc. R. Soc. Lond. A
,
155
(
886
), pp.
570
575
. 10.1098/rspa.1936.0120
27.
Bailey
,
S. C. C.
,
Hultmark
,
M.
,
Monty
,
J. P.
,
Alfredsson
,
P. H.
,
Chong
,
M. S.
,
Duncan
,
R. D.
,
Fransson
,
J. H. M.
,
Hutchins
,
N.
,
Marusic
,
I.
,
McKeon
,
B. J.
,
Nagib
,
H. M.
,
Örlü
,
R.
,
Segalini
,
A.
,
Smits
,
A. J.
, and
Vinuesa
,
R.
,
2013
, “
Obtaining Accurate Mean Velocity Measurements in High Reynolds Number Turbulent Boundary Layers Using Pitot Tubes
,”
J. Fluid Mech.
,
715
, pp.
642
670
. 10.1017/jfm.2012.538
28.
Telionis
,
D. P.
,
1979
, “
Review—Unsteady Boundary Layers, Separated and Attached
,”
ASME J. Fluids Eng.
,
101
(
1
), pp.
29
43
. 10.1115/1.3448732
29.
Schlatter
,
P.
, and
Örlü
,
R.
,
2010
, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
. 10.1017/S0022112010003113
30.
Schlichting
,
H.
,
1968
,
Boundary-Layer Theory
,
McGraw-Hill Book Company
,
New York
.
31.
Drela
,
M.
, and
Youngren
,
H.
,
2008
,
A User’s Guide to MISES 2.63
,
MIT Fluid Dynamics Research Laboratory
,
Cambridge, MA
.
32.
Batchelor
,
G. K.
,
1953
,
The Theory of Homogenous Turbulence
,
Cambridge University Press
,
Cambridge, UK
.
33.
Coull
,
J. D.
,
2017
, “
Endwall Loss in Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
8
), p.
081004
. DOI: 10.1115/1.4035663
34.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
. 10.1115/1.3262163
35.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill Book Company
,
New York
.
You do not currently have access to this content.