Abstract

The interaction of coolant jets is significant in effusion settings as a result of the short streamwise and spanwise distance between films. This complicates the design of effusion cooling devices because computing the interaction between numerous, closely spaced rows of films is a challenging task. A flat plate effusion cooling model is investigated at both low and high blowing ratios. Pressure-sensitive paint (PSP) is used to measure film effectiveness. Computational fluid dynamics (CFD) calculations are performed to examine the cooling flow features in detail. The mesh sensitivity is studied to demonstrate the effect of mesh size on film effectiveness. The solution obtained by coarse mesh may not capture the correct trend with blowing ratio variation. Results of the computational work by fine mesh demonstrate good agreement with the measured effectiveness. Coolant jets interaction is also investigated. The profile of quantities such as velocity, temperature, kinetic energy, and Reynolds stress at several locations in the flow field is compared. The boundary layer profiles are scaled by the thermal boundary layer thickness to study the feature of heat transfer. It is observed that profiles of the flow quantities are self-similar. Two distinct scalings are found: an outer scaling based on boundary layer thickness which collapses the upper part of the profiles; an inner scaling which collapses the profiles at distances from the wall comparable to the penetration depth of a single jet. The latter scaling is based on the distance from the wall to the minimum temperature profile. This distance identifies the location of the coolant leaving the effusion cooling device.

References

1.
Krewinkel
,
R.
,
2013
, “
A Review of Gas Turbine Effusion Cooling Studies
,”
Int. J. Heat Mass Transfer
,
66
, pp.
706
722
. 10.1016/j.ijheatmasstransfer.2013.07.071
2.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach
,
113
(
3
), pp.
442
449
. 10.1115/1.2927894
3.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
Impact of Film-Cooling Jets on Turbine Aerodynamic Losses
,”
ASME J. Turbomach
,
122
(
3
), pp.
537
545
. 10.1115/1.1303818
4.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow Part I. Effectiveness
,”
Int. J. Heat Mass Transfer
,
48
(2
3–24
), pp.
4995
5016
. 10.1016/j.ijheatmasstransfer.2005.05.019
5.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow Part II. Heat Transfer Coefficients
,”
Int. J. Heat Mass Transfer
,
48
(2
3–24
), pp.
5017
5035
. 10.1016/j.ijheatmasstransfer.2005.05.020
6.
Arcangeli
,
L.
,
Facchini
,
B.
,
Surace
,
M.
, and
Tarchi
,
L.
,
2008
, “
Correlative Analysis of Effusion Cooling Systems
,”
ASME J. Turbomach.
,
130
(
1
), p.
011016
. 10.1115/1.2749298
7.
Kim
,
K. M.
,
Moon
,
H.
,
Park
,
J. S.
, and
Cho
,
H. H.
,
2014
, “
Optimal Design of Impinging Jets in an Impingement-Effusion Cooling System
,”
Energy
,
66
, pp.
839
848
. 10.1016/j.energy.2013.12.024
8.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2012
, “
Conjugate Heat Transfer Predictions of Effusion Cooling: The Influence of Injection Hole Size on Cooling Performance
,” ASME GT2012-68516.
9.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2016
, “
Impingement/Effusion Cooling Wall Heat Transfer: Conjugate Heat Transfer Computational Fluid Dynamic Prediction
,” ASME GT2016-56961.
10.
Vishal
,
V.
,
Sriraam
,
J.
,
Bala
,
V. D.
,
Subhash
,
K.
,
Velamati
,
R. K.
,
Srikrishnan
,
A. R.
,
Ramakrishnananda
,
B.
, and
Batchu
,
S.
,
2018
, “
Studies on Effusion Cooling: Impact of Geometric Parameters on Cooling Effectiveness and Coolant Consumption
,”
Aerosp. Sci. Technol.
,
77
, pp.
58
66
. 10.1016/j.ast.2017.12.044
11.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2018
, “
Development of a Steady-State Experimental Facility for the Aerothermal Analysis of Double-Wall Effusion Cooling Geometries
,” ASME GT2018-75924.
12.
Cerri
,
G.
,
Giovannelli
,
A.
,
Battisti
,
L.
, and
Fedrizzi
,
R.
,
2007
, “
Advances in Effusive Cooling Techniques of Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
692
698
. 10.1016/j.applthermaleng.2006.10.012
13.
Han
,
J. C.
, and
Mehendale
,
A. B.
,
1986
, “
Flat-Plate Film Cooling With Steam Injection Through One Row and Two Rows of Inclined Holes
,”
ASME J. Turbomach.
,
108
(
1
), pp.
137
144
. 10.1115/1.3262013
14.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows-Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(
2
), pp.
237
246
. 10.1115/1.1731395
15.
Jiang
,
Y.
,
Capone
,
L.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2018
, “
A Detailed Study of the Interaction Between Two Rows of Cooling Holes
,”
ASME J. Turbomach.
,
140
(4), p.
041008
. https://doi.org/10.1115/1.4038833
16.
Murray
,
A. V.
,
Ireland
,
P. T.
,
Wong
,
T. H.
,
Tang
,
S. W.
, and
Rawlinson
,
A. J.
,
2018
, “
High Resolution Experimental and Computational Methods for Modelling Multiple Row Effusion Cooling Performance
,”
Int. J. Turbomach. Propuls. Power
,
3
(
1
), pp.
1
16
. 10.3390/ijtpp3010004
17.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
18.
Wong
,
T. H.
,
Ireland
,
P. T.
, and
Self
,
K. P.
,
2016
, “
Film Cooling Effectiveness Measurements on Trailing Edge Cutback Surface and Lands Following Novel Cross Corrugated Slot Geometry
,” ASME GT2016-57371.
19.
Miao
,
J. M.
, and
Wu
,
C. Y.
,
2006
, “
Numerical Approach to Hole Shape Effect on Film Cooling Effectiveness Over Flat Plate Including Internal Impingement Cooling Chamber
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
919
938
. 10.1016/j.ijheatmasstransfer.2005.09.015
20.
Muldoon
,
F.
, and
Acharya
,
S.
,
2006
, “
Analysis of k–ε Budgets for Film Cooling Using Direct Numerical Simulation
,”
AIAA J.
,
44
(
12
), pp.
3010
3021
. 10.2514/1.20597
21.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2007
, “
CFD Predictions of Film Cooling Adiabatic Effectiveness for Cylindrical Holes Embedded in Narrow and Wide Transverse Trenches
,” ASME GT2007-28005.
22.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2013
, “
Improved Trench Film Cooling With Shaped Trench Outlets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021009
. 10.1115/1.4006606
23.
Konopka
,
M.
,
Jessen
,
W.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2013
, “
Large-Eddy Simulation of Film Cooling in an Adverse Pressure Gradient Flow
,”
ASME J. Turbomach.
,
135
(
3
), p.
031031
. 10.1115/1.4007583
24.
Sakai
,
E.
,
Takahashi
,
T.
, and
Watanabe
,
H.
,
2014
, “
Large-eddy Simulation of an Inclined Round jet Issuing Into a Crossflow
,”
Int. J. Heat Mass Transfer
,
69
, pp.
300
311
. 10.1016/j.ijheatmasstransfer.2013.10.027
25.
Chai
,
X.
,
Iyer
,
P. S.
, and
Mahesh
,
K.
,
2015
, “
Numerical Study of High Speed Jets in Crossflow
,”
J. Fluid Mech.
,
785
, pp.
152
188
. 10.1017/jfm.2015.612
26.
Muldoon
,
F.
, and
Acharya
,
S.
,
2009
, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
52
(1
3–14
), pp.
3118
3127
. 10.1016/j.ijheatmasstransfer.2009.01.030
27.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
28.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
. 10.1016/0021-9991(81)90128-5
29.
Moinier
,
P.
,
Muller
,
J.
, and
Giles
,
M.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
. 10.2514/2.1556
30.
Moinier
,
P.
, and
Giles
,
M.
,
2002
, “
Stability Analysis of Preconditioned Approximations of the Euler Equations on Unstructured Meshes
,”
J. Comput. Phys.
,
178
(
2
), pp.
498
519
. 10.1006/jcph.2002.7038
31.
Jiang
,
Y.
,
He
,
L.
,
Capone
,
L.
, and
Romero
,
E.
,
2016
, “
Investigation of Steady and Unsteady Film-Cooling Using Immersed Mesh Blocks With New Conservative Interface Scheme
,” ASME GT2016-57363.
32.
Jiang
,
Y.
,
Gurram
,
N.
,
Romero
,
E.
,
Ireland
,
P. T.
, and
di Mare
,
L.
,
2018
, “
CFD Investigation of the Flow of Trailing Edge Cooling Slots
,”
ASME J. Turbomach
,
141
(
7
), p.
071002
. 10.1115/1.4042569
You do not currently have access to this content.