Abstract

In the last decades, major improvements in transonic centrifugal compressor design have been achieved. The further exploration of design space is enabled by recent progress in structural mechanics and manufacturing. A challenging task of inducer design especially in terms of transonic inflow conditions is to provide a wide flow range and reduced losses due to a sufficient shock control. The use of so-called multidisciplinary design optimization with an extensive amount of free parameters leads finally to complex designs. DLR’s latest fast rotating centrifugal compressor (SRV5) operates at a design speed of Mu2 = 1.72 and a total pressure ratio of 5.72. This compressor design is characterized by an S-shaped leading edge and free-form blade surfaces. Due to the complex design, the key design features are difficult to explore. Therefore, nonintrusive measurements are conducted on the highly loaded SRV5. The laser-2-focus (L2F) approach that is used in addition with the doppler-global-velocimetry (DGV) delivers a three-dimensional velocity field. Besides the impeller inflow, the outflow is also part of the experimental and numerical verification of the advanced compressor design. Experimental results are compared with the numerical analysis of the compressor using DLR’s Reynolds-averaged Navier–Stokes Flow Solver TRACE. The deep insight of the inflow leads to a better understanding of the operating behavior of such impeller designs.

References

1.
Hazby
,
H.
,
Casey
,
M.
,
Numakura
,
R.
, and
Tamaki
,
H.
,
2015
, “
A Transonic Mixed Flow Compressor for an Extreme Duty
,”
ASME J. Turbomach.
,
137
(
5
), p.
051010
. 10.1115/1.4028738
2.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
140
(
5
), p.
051011
. 10.1115/1.4038908
3.
Wittrock
,
D.
,
Reutter
,
O.
,
Schmidt
,
T.
,
Klausmann
,
J.
, and
Nicke
,
E.
,
2018
, “
Design of a Transonic High Flow Coefficient Centrifugal Compressor by Using Advanced Design Methods
,”
Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, pp.
1
11
.
4.
Hazby
,
H.
,
Robinson
,
C.
,
Casey
,
M.
,
Rusch
,
D.
, and
Hunziker
,
R.
,
2017
, “
Free-Form Versus Ruled Inducer Design in a Transonic Centrifugal Impeller
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, pp.
1
12
.
5.
Lohmberg
,
A.
,
Casey
,
M.
, and
Ammann
,
S.
,
2003
, “
Transonic Radial Compressor Inlet Design
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
217
(
4
), pp.
367
374
. 10.1243/095765003322315423
6.
Voß
,
C.
,
Aulich
,
M.
, and
Raitor
,
T.
,
2014
, “
Metamodel Assisted Aeromechanical Optimization of a Transonic Centrifugal Compressor
,”
ISROMAC 15
,
Honolulu, HI
,
Feb. 24–28
, pp.
1
8
.
7.
Elfert
,
M.
,
Weber
,
A.
,
Wittrock
,
D.
,
Peters
,
A.
,
Voss
,
C.
, and
Nicke
,
E.
,
2017
, “
Experimental and Numerical Verification of an Optimization of a Fast Rotating High-Performance Radial Compressor Impeller
,”
ASME J. Turbomach.
,
139
(
10
), p.
101007
. 10.1115/1.4036357
8.
Eckardt
,
D.
,
1977
, “
Untersuchung Der Strahl/Totwasser-Stroemung Hinter Einem Hochbelasteten Radialverdichterlaufrad
,”
Ph.D. thesis
,
RWTH Aachen
,
Aachen, Germany
.
9.
Schodl
,
R.
,
Förster
,
W.
,
Karpinski
,
G.
,
Krain
,
H.
, and
Röhle
,
I.
,
2000
, “
3-Component Doppler Laser-Two-Focus Velocimetry Applied to a Transonic Centrifugal Compressor
,”
10th International Symposium on Application of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 10–13
, pp.
1
12
.
10.
Krain
,
H.
, and
Hoffmann
,
B.
,
2008
, “
Flow Study of a Redesigned High Pressure Ratio Centrifugal Compressor
,”
AIAA J.
,
24
(
5
), pp.
1
7
. 10.2514/1.35559
11.
Becker
,
K.
,
Heitkamp
,
K.
, and
Kügeler
,
E.
,
2010
, “
Recent Progress In A Hybrid-Grid CFD Solver For Turbomachinery Flows
,”
V European Conference on Computational Fluid Dynamics ECCOMAS CFD
,
Lisbon, Portugal
,
June 14–17
, pp.
1
13
.
12.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
,
Kyoto, Japan
,
Aug. 16–18
, pp.
10-4-1
10-4-6
.
13.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Rogallo
,
R. S.
,
1985
, “
Effect of Rotation on Isotropic Turbulence: Computation and Modelling
,”
J. Fluid Mech.
,
154
, pp.
321
336
. 10.1017/S0022112085001550
14.
Weber
,
A.
,
Morsbach
,
C.
,
Kuegeler
,
E.
,
Rube
,
C.
, and
Wedeking
,
M.
,
2016
, “
Flow Analysis of a High Flowrate Centrifugal Compressor Stage and Comparison With Test Rig Data
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
, pp.
1
12
.
You do not currently have access to this content.