Abstract

This paper presents an analysis of the flow in the return system of a centrifugal compressor with a flow coefficient of 0.15. Based on the detailed experimental and numerical data, the areas of high losses and potentials for improving the return system geometry are revealed. Special emphasis is placed on the interaction of the flow in the return system components, including the U-bend, the vaned return channel, and the final L-bend. Strong flow redistribution occurs due to the sharp curvature of the U-bend, forming a blockage area at the hub near the vane leading edge. This causes a strong passage vortex, which is further intensified by the pressure gradient induced by the L-bend. Additionally, the flow near the shroud accelerates due to the large blockage area near the hub at the exit of the U-bend, resulting in high friction losses. To identify the main causes of loss, a method was evolved. It was validated and supplied by pneumatic measurement data. On this basis, analytical approaches were taken to quantify the total pressure losses due to friction, secondary flows, incidence, and trailing edge flow. As a result, approximately 60% of the return system losses arise due to friction. Another 30–40% are caused by secondary flows. It can be concluded that the results of the investigation contribute to the understanding of the secondary flow structures inside a centrifugal compressor return system of high mass flowrates. By combining the knowledge acquired in respect to the sources of highest losses with the experimental data, a well-founded basis for future optimization is achieved and the validation of numerical approaches is possible.

References

1.
Simon
,
H.
, and
Rothstein
,
E.
,
1983
, “On the Development of Return Passages of Multi-Stage Centrifugal Compressors,”
Return Passages of Multi-Stage Turbomachinery
, FED, Vol.
3
,
P.
Nykorowytsch
, ed.,
ASME
,
New York
, pp.
1
12
.
2.
Rube
,
C.
,
Rossbach
,
T.
,
Wedeking
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2016
, “
Experimental and Numerical Investigation of the Flow Inside the Return Channel of a Centrifugal Process Compressor
,”
ASME J. Turbomach.
,
138
(
10
), p.
101006
. 10.1115/1.4032905
3.
Rossbach
,
T.
,
Rube
,
C.
,
Wedeking
,
M.
,
Franz
,
H.
, and
Jeschke
,
P.
,
2015
, “
Performance Measurements of a Full-Stage Centrifugal Process Gas Compressor Test Rig
,”
European Conference on Turbomachinery Fluid dynamics and Thermodynamics
,
Madrid, Spain
,
Mar. 23–27
,
ASME
Paper No. ETC2015-084
. 10.1115/gt2015-43640
4.
Franz
,
H.
,
2015
, “
Numerische Untersuchung der Durchströmung einer Rückführung eines mehrstufigen Radialverdichters
,” Ph.D. thesis,
RWTH Aachen
,
Aachen, Germany
.
5.
Franz
,
H.
,
Rube
,
C.
,
Wedeking
,
M.
, and
Jeschke
,
P.
,
2015
, “
Numerical Investigation of the Return Channel of a High-Flow Centrifugal Compressor Stage
,”
Proceedings of ASME Turbo Expo
,
Montreal, Canada
,
June 15–19
,
ASME
Paper No. GT2015-43640. 10.1115/gt2015-43640
6.
Akaike
,
S.
, and
Toyokura
,
T.
,
1979
, “
Flow in Interstage Return Bend of Centrifugal Turbomachinery
,”
6th Conference on Fluid Machinery
,
Budapest, Hungary
,
Sept. 17–22
.
7.
Rothstein
,
E.
,
1984
, “
Experimentelle und theoretische Untersuchung der Strömungsvorgänge in Rückführkanälen von Radialverdichterstufen, insbesondere solcher mit geringen Kanalbreiten
,” Ph.D. thesis,
RWTH Aachen
,
Aachen, Germany
.
8.
Rothstein
,
E.
, and
Gallus
,
H.
,
1983
, “
Untersuchung von beschaufelten Rückführkanälen mehrstufiger Radialverdichter
,”
VDI-Berichte
,
487
(Thermische Strömungsmaschinen 83), pp.
209
220
.
9.
Kanemoto
,
T.
, and
Toyokura
,
T.
,
1986
, “
Studies on Circular Cascades for Return Channels of Centrifugal Turbomachinery (2nd Report, Flows and Performance of Cascade)
,”
Bull. Jpn. Soc. Mech. Eng.
,
29
(
255-23
), pp.
2893
2900
. 10.1299/jsme1958.29.2893
10.
Ellis
,
G. O.
,
1960
, “
Crossover Systems Between the Stages of Centrifugal Compressors
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
155
168
. 10.1115/1.3662505
11.
Schinko
,
N.
,
Kürner
,
M.
,
Staudacher
,
S.
,
Rose
,
M. G.
,
Gier
,
J.
,
Raab
,
I.
, and
Lippl
,
F.
,
2009
, “
Das ATRD-Projekt – Ein Beispiel für die Zusammenarbeit von Industrie und Universität zur Förderung der Grundlagenforschung
,”
Deutscher Luft- und Raumfahrtkongress, ASME Paper No. 121156
.
12.
Grabe
,
M.
,
2011
,
Grundriss der Generalisierten Gauß’schen Fehlerrechnung
, 1st ed.,
Springer Verlag
,
Berlin, Heidelberg, Germany
.
13.
Rossbach
,
T.
,
2019
, “
Sekundärströmungen im Rückführsystem einer Radialverdichterstufe
,” Ph.D. thesis,
RWTH Aachen
,
Aachen, Germany
.
14.
Yang
,
Z.
, and
Shih
,
H.
,
1993
, “
New Time Scale Based k-Epsilon Model for Near-Wall Turbulence
,”
AIAA J.
,
31
(
7
), pp.
1191
1198
. 10.2514/3.11752
15.
Bisping
,
J.
,
Rossbach
,
T.
,
Grates
,
D.
,
Jeschke
,
P.
, and
Hildebrandt
,
A.
,
2018
, “
Influence of Diffuser Diameter Ratio on the Performance of a Return Channel Within a Centrifugal Compressor Stage
,”
Proceedings of GPPS Forum 18
,
Montreal, Canada
,
May 7–9
,
ASME
Paper No. GPPS-NA-2018-0034
. 10.1115/1.4046686
16.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors – A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
New York
.
17.
Lenke
,
L. J.
,
1999
, “
Numerische Simulation der turbulenten Strömung in Rückführkanälen mehrstufiger Radialverdichter
,” Ph.D. thesis,
Gerhard-Mercator-Universität
,
Duisburg, Germany
.
18.
Lampart
,
P.
,
2009
, “
Investigation of Endwall Flows and Losses in Axial Turbines. Part II. The Effect of Geometrical and Flow Parameters
,”
J. Theor. Appl. Mech.
,
47
(
4
), pp.
829
853
.
19.
Niehuis
,
R.
,
Lücking
,
P.
, and
Stubert
,
B.
,
1990
, “
Experimental and Numerical Study on Basic Phenomena of Secondary Flows in Turbines
,”
Technical Report. AGARD CP-469, MTU GmbH
.
20.
Moore
,
J.
, and
Adhye
,
R. Y.
,
1985
, “
Secondary Flows and Losses Downstream of a Turbine Cascade
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
961
968
. 10.1115/1.3239842
21.
Stanitz
,
J. D.
,
1952
, “
One-Dimensional Compressible Flow in Vaneless Diffusers of Radial- and Mixed-Flow Centrifugal Compressors, including Effects of Friction, Heat Transfer and Area Change
,”
Technical Report TN 2610
,
NACA, National Advisory Committee for Aeronautics
,
Washington, USA
.
22.
Aungier
,
R. H.
,
1993
, “
Aerodynamic Design and Analysis of Vaneless Diffusers and Return Channels
,”
International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, USA
,
May 24–27
,
ASME
Paper No. 93-GT-101
. 10.1115/93-gt-101
23.
Dubitsky
,
O.
, and
Japikse
,
D.
,
2008
, “
Vaneless Diffuser Advanced Model
,”
ASME J. Turbomach.
,
130
(
1
), p.
011020
. 10.1115/1.2372781
24.
Truckenbrodt
,
E.
,
1968
,
Strömungsmechanik – Grundlagen und technische Anwendungen
, 1st ed.,
Springer Verlag
,
Berlin, Heidelberg, Germany
.
25.
Runstadler
,
P. W.
, and
Dolan
,
F. X.
,
1975
,
Diffuser Data Book
, 1st ed.,
Creare Inc.
,
Hanover, N.H.
26.
Hildebrandt
,
A.
, and
Schilling
,
F.
,
2017
, “
Numerical and Experimental Investigation of Return Channel Vane Aerodynamics With Two-Dimensional and Three-Dimensional Vanes
,”
ASME J. Turbomach.
,
139
(
1
), p.
011010
. 10.1115/1.4034341
27.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
28.
Schlichting
,
H.
, and
Gersten
,
K.
,
1997
,
Grenzschicht-Theorie
, 9th ed.,
Springer Verlag
,
Berlin, Heidelberg, Germany
.
29.
Ribi
,
B.
,
2007
,
Turbomachinery Design
,
ETH, Turbomachinery Laboratory
,
Zurich
.
30.
Denton
,
J. D.
, and
Cumpsty
,
N. A.
,
1987
, “
Loss Mechanisms in Turbomachines
,”
Proceedings of IMechE, International Conference of Turbomachinery
,
London
,
Sept. 1–3
Paper No. C260/87
.
31.
Idelchik
,
I. E.
,
1994
,
Handbook of Hydraulic Resistance
, 3rd ed.,
CRC Press, Inc.
,
Boca Raton, FL
.
32.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
J. Eng. Power
,
92
(
3
), pp.
252
256
. 10.1115/1.3445349
33.
Gregory-Smith
,
D. G.
,
1982
, “
Secondary Flows and Losses in Axial Flow Turbines
,”
J. Eng. Power
,
104
(
4
), pp.
819
822
. 10.1115/1.3227350
You do not currently have access to this content.