Abstract

The paper discusses the migration, the interaction with the blades, and the attenuation of hot streaks generated by combustor burners, during their propagation within the first turbine stage of aero-engines. Experiments and computational fluid dynamics (CFD) simulations were carried out in the framework of the European Project RECORD and on its follow-up. Measurements considering burner-representative temperature perturbations injected upstream of an un-cooled high-pressure gas turbine stage were performed in the high-speed closed-loop test-rig of the Politecnico di Milano (Italy). The hot streaks were injected in a streamwise direction at the stage inlet in four different circumferential positions with respect to the stator blade. They feature a 20% over-temperature with respect to the main flow. Detailed temperature measurements as well as unsteady aerodynamic measurements upstream and downstream of the blade rows were performed. Time-accurate CFD simulations of the flow upstream and within the turbine stage were performed with the TRAF code, developed by the Università degli Studi di Firenze (Italy). Measurements show a relevant attenuation of hot streaks throughout their transport within the stator and the rotor blade rows, highly depending on the injection azimuthal position. The perturbations were observed to lose their spatial coherence, especially in the transport within the rotor, and to undergo severe spanwise migration. Simulations exhibit a good agreement with the experiments on the measurement planes and allow tracking the complex flow phenomena occurring within the blade rows. Finally, the aerodynamic and thermal implications of the inlet temperature perturbations are properly highlighted and discussed.

References

1.
Sharma
,
O.
,
Pickett
,
G.
, and
Ni
,
R.
,
1992
, “
Assessment of Unsteady Flow in Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
79
90
. 10.1115/1.2928001
2.
Butler
,
T.
,
Sharma
,
O.
,
Joslyn
,
H.
, and
Dring
,
R.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
. 10.2514/3.23116
3.
Dorney
,
D.
, and
Sondak
,
D.
,
2000
, “
Effects of Tip Clearance on Hot Streak Migration in a High Subsonic Single Stage Turbine
,”
ASME J. Turbomach.
,
122
(
4
), pp.
613
620
. 10.1115/1.1290399
4.
An
,
B.
,
Liu
,
J.
, and
Jiang
,
H.
,
2009
, “
Numerical Investigation on Unsteady Effects of Hot Streak on Flow and Heat Transfer in Turbine Stage
,”
ASME J. Turbomach.
,
131
(
3
), p.
031015
. 10.1115/1.2988172
5.
Pinelli
,
L.
,
Poli
,
F.
,
Arnone
,
A.
,
Guerin
,
S.
,
Torzo
,
D.
,
Favre
,
C.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2015
, “
On the Numerical Evaluation of Tone Noise Emissions Generated by a Turbine Stage: An In-Depth Comparison Among Different Computational Methods
,”
ASME Turbo Expo 2015
,
Montreal, Quebec, Canada
,
June 15–19
, ASME Paper GT2015-42376.
6.
Knoblock
,
K.
,
Neuhaus
,
L.
,
Bake
,
F.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Experimental Assessment of Noise Generation and Transmission in a High-Pressure Transonic Turbine Stage
,”
ASME J. Turbomach.
,
139
(
10
), p.
101006
. 10.1115/1.4036344
7.
Munk
,
M.
, and
Prim
,
R.
,
1947
, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
,
33
(
5
), pp.
137
141
.
8.
Hawthorne
,
W.
,
1974
, Secondary Vorticity in Stratified Compressible Fluids in Rotating Systems, Tech. Rep.,
Department of Engineering, University of Cambridge
,
Cambridge
.
9.
Giles
,
M.
, and
Saxer
,
A.
,
1994
, “
Predictions of Three-Dimensional Steady and Unsteady Inviscid Transonic Stator/Rotor Interaction With Inlet Radial Temperature Nonuniformity
,”
ASME J. Turbomach.
,
116
(
3
), pp.
347
357
. 10.1115/1.2929421
10.
Ong
,
J.
, and
Miller
,
R.
,
2012
, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME J. Turbomach.
,
134
(
5
), pp.
051002
. 10.1115/1.4003832
11.
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Hot Streak Evolution in an Axial Hp Turbine Stage
,”
Int. J. Turbomach. Propul. Power
,
2
(
2
), p.
6
. 10.3390/ijtpp2020006
12.
Koupper
,
C.
,
Bonneau
,
G.
, and
Gicquel
,
L.
,
2016
, “
Large Eddy Simulation of the Combustor Turbine Interface: Study of the Potential and Clocking Effects
,”
ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
,
ASME Paper GT2016-56443
.
13.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Chana
,
K.
, and
Rosic
,
B.
,
2017
, “
Investigation of Unsteady Flow Phenomena in the First Vane Caused by the Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
. 10.1115/1.4035073
14.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2007
, “
Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator–Rotor Axial Gaps–Part I: Three-Dimensional Time-Averaged Flow Field
,”
ASME J. Turbomach.
,
129
(
3
), pp.
572
579
. 10.1115/1.2472383
15.
Gaetani
,
P.
,
Persico
,
G.
, and
Spinelli
,
A.
,
2017
, “
Coupled Effect of Expansion Ratio and Blade Loading on the Aerodynamics of a High-Pressure Gas Turbine
,”
Appl. Sci.
,
7
(
3
), pp.
259
. 10.3390/app7030259
16.
Gaetani
,
P.
,
Persico
,
G.
,
Spinelli
,
A.
,
Sandu
,
C.
, and
Niculescu
,
F.
,
2015
, “
Entropy Wave Generator for Indirect Combustion Noise Experiments in a High-Pressure Turbine
,”
11th European Conference on Turbomachinery
,
Madrid, Spain
,
Mar. 23–27
.
17.
Persico
,
G.
,
Gaetani
,
P.
, and
Spinelli
,
A.
,
2017
, “
Assessment of Synthetic Entropy Waves for Indirect Combustion Noise Experiments in Gas Turbines
,”
Exp. Therm. Fluid Sci.
,
88
(
1
), pp.
376
388
. 10.1016/j.expthermflusci.2017.06.012
18.
Gaetani
,
P.
,
Persico
,
G.
, and
Guardone
,
A.
,
2005
, “
Design and Analysis of New Concept Fast-Response Pressure Probes
,”
Meas. Sci.Technol.
,
16
(
9
), pp.
17411
.
19.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three–Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
. 10.1115/1.2929430
20.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Ind. Inc.
,
La Cañada, CA
, ISBN 1-928729-10-X.
21.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1995
, “
Integration of Navier–Stokes Equations Using Dual Time Stepping and a Multigrid Method
,”
AIAA J.
,
33
(
6
), pp.
985
990
. 10.2514/3.12518
22.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,”
10th Computational Fluid Dynamics Conference
,
Honolulu, USA
.
23.
Giovannini
,
M.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Dominguez
,
A.
,
2015
, “
A Hybrid Parallelization Strategy of a CFD Code for Turbomachinery Applications
,”
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Madrid, Spain
,
Mar. 23–27
.
24.
Pacciani
,
R.
, and
Spano
,
E.
,
2006
, “
Numerical Investigation of the Effect of Roughness and Passing Wakes on LP Turbine Blades Performance
,”
ASME Turbo Expo 2006
,
Barcelona, Spain
,
May 8–11
, ASME Paper GT2006-90221.
25.
Giovannini
,
M.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2014
, “
Evaluation of Unsteady CFD Models Applied to the Analysis of a Transonic High-Pressure Turbine Stage
,”
Proc. Inst. Mech. Eng. A J. Power
,
228
(
7
), pp.
813
824
.
26.
Bellucci
,
J.
,
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Arcangeli
,
L.
,
Maceli
,
N.
, and
Dossena
,
V.
,
2015
, “
The Influence of Roughness on a High-Pressure Steam Turbine Stage: An Experimental and Numerical Study
,”
J. Eng. Gas Turbines Power
,
137
(
2
), p.
012602
. 10.1115/1.4028205
27.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2008
, “
Numerical Investigation of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
130
(
1
), p.
011010
. 10.1115/1.2752186
28.
Marconcini
,
M.
,
Bianchini
,
A.
,
Checcucci
,
M.
,
Ferrara
,
G.
,
Arnone
,
A.
,
Ferrari
,
L.
,
Biliotti
,
D.
, and
Rubino
,
D. T.
,
2017
, “
A Three-Dimensional Time-Accurate Computational Fluid Dynamics Simulation of the Flow Field Inside a Vaneless Diffuser During Rotating Stall Conditions
,”
ASME J. Turbomach.
,
139
(
2
), p.
021001
. 10.1115/1.4034633
29.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2019
, “
LES and RANS Analysis of the End-Wall Flow in a Linear Low-Pressure-Turbine Cascade—Part II: Loss Generation
,”
ASME J. Turbomach.
,
141
(
5
), p.
051004
. 10.1115/1.4042208
You do not currently have access to this content.