Abstract

Knowing the flow conditions at the combustor turbine interface is a key asset for an efficient cooling design of high-pressure turbines. However, measurements and numerical predictions of combustor exit conditions are challenging due to the extreme temperatures and complex flow patterns in modern combustors. Even the time-averaged flow fields at the combustor exit which are commonly used as inlet condition for simulations of the turbine are therefore subject to uncertainty. The goal of this paper is to illustrate how aleatory uncertainties in the magnitude and position of residual swirl and hot spots at the combustor exit affect uncertainties in the prediction of cooling and heat load of the first nozzle guide vane. Also, it is identified which of these uncertain parameters have the greatest impact. An iso-thermal test rig and an engine realistic setup with lean burn inflow conditions are investigated. The analysis combines a parameterized model for combustor exit flow fields with uncertainty quantification methods. It is shown that the clocking position of turbine inlet swirl has a large effect on the formation of secondary flows on the vane surface and thus affects the uncertainty of thermal predictions on the hub and vanes.

References

1.
Munk
,
M.
, and
Prim
,
R.
,
1947
, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. USA
,
33
(
5
), pp.
1
8
. 10.1073/pnas.33.5.137
2.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
,
1970
, “
Intra-Stator Transport of Rotor Wakes and Its Effects on Compressor Performance
,”
ASME J. Energy Power
,
92
(
4
), pp.
359
368
. 10.1115/1.3445365
3.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
121
(
3
), p.
031009
. 10.1115/1.2987240
4.
Giller
,
L.
, and
Schiffer
,
H.-P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
Proceedings of ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
.
ASME Paper No. GT2012-69157
.
5.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Rosic
,
B.
, and
Chana
,
K.
,
2017
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow with Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
. 10.1115/1.4035073
6.
Vagnoli
,
S.
, and
Verstraete
,
T.
,
2015
, “
Numerical Study of the Combustor-Turbine Interaction Using Coupled Unsteady Solvers
,”
Proceedings of the 22nd ISABE
,
Phoenix, AZ
,
Oct. 25–30
.
7.
Klapdor
,
E. V.
,
2011
, “
Simulation of Combustor-Turbine Interaction in a Jet Engine
,”
Ph.D. thesis
,
TU Darmstadt
,
Darmstadt
.
8.
Duchaine
,
F.
,
Dombard
,
J.
,
Gicquel
,
L. Y. M.
, and
Koupper
,
C.
,
2017
, “
On the Importance of Inlet Boundary Conditions for Aerothermal Predictions of Turbine Stages with Large Eddy Simulation
,”
Comput. Fluids
,
154
(
1
), pp.
60
73
. 10.1016/j.compfluid.2017.05.024
9.
Montomoli
,
F.
,
Carnevale
,
M.
,
D’Ammaro
,
A.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2015
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer
,
Berlin
.
10.
Schneider
,
M.
,
Schiffer
,
H.-P.
, and
Lehmann
,
K.
,
2017
, “
Parameterised Model of 2D Combustor Exit Flow Conditions for High-Pressure Turbine Simulations
,”
Int. J. Turbomach. Propul. Power
,
2
(
4
), p.
20
. 10.3390/ijtpp2040020
11.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
35
52
. 10.1146/annurev.fluid.010908.165248
12.
Hosder
,
S.
, and
Walters
,
R.
,
2007
, “
Non-Intrusive Polynomial Chaos Methods for Stochastic CFD Theory and Applications
,”
Symposium on Computationaal Uncertainty in Military Vehicle Design NATO Applied Vehicle Technology Panel
,
Athens, Greece
,
Dec. 3–6
.
13.
Feinberg
,
J.
, and
Langtangen
,
H. P.
,
2015
, “
Chaospy: An Open Source Tool for Designing Methods of Uncertainty Quantification
,”
J. Comput. Sci.
,
11
(
1
), pp.
46
57
. 10.1016/j.jocs.2015.08.008
14.
Krichbaum
,
A.
,
Werschnik
,
H.
,
Wilhelm
,
M.
,
Schiffer
,
H.-P.
, and
Lehmann
,
K.
,
2015
, “
A Large Scale Turbine Test Rig for the Investigation of High Pressure Turbine Aerodynamics and Heat Transfer With Variable Inflow Conditions
,”
Proceedings of ASME Turbo Expo
,
Montreal, Canada
,
June 15–19
,
ASME Paper No. GT2015-43261
.
15.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
J. Fluid. Eng.
,
116
(
3
), pp.
405
413
. 10.1115/1.2910291
16.
CFX®
,
2016
,
Solver Theory Guide. Release 17.0
,
ANSYS®
.
17.
Hilgert
,
J.
,
Bruschewski
,
M.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2017
, “
Numerical Studies on Combustor-Turbine Interaction At the Large Scale Turbine Rig (LSTR)
,”
Proceedings of ASME Turbo Expo
,
Charlotte, NC
,
June 26–30
,
American Society of Mechanical Engineers
,
ASME Paper No. GT2017-64504
.
18.
Werschnik
,
H.
,
2017
,
Aerodynamic Impact of Swirling Combustor Inflow on Endwall Heat Transfer and the Robustness of the Film Cooling Design in An Axial Turbine
,
Shaker Verlag
,
Maastricht
.
19.
Wilhelm
,
M.
,
Schmidt
,
M.
,
Goertz
,
F.
,
Schiffer
,
H.-P.
, and
Lyko
,
C.
,
2017
, “
Influence of Combustor Swirl on Turbulence At the Large Scale Turbine Rig (LSTR)
,”
ISABE-2017-21393
,
Manchester, UK
,
Sept. 3–8
,
International Society for Air Breathing Engines
.
20.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H.-P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows At the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propul. Power
,
2
(
3
), p.
12
. 10.3390/ijtpp2030012
21.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
Cambridge
.
22.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), p.
1422
. 10.1088/0957-0233/12/9/307
23.
Klinger
,
H.
,
Lazik
,
W.
, and
Wunderlich
,
T.
,
2008
, “
The Engine 3E Core Engine
,”
Proceedings of ASME Turbo Expo
,
Berlin, Germany
,
June 9–13
,
American Society of Mechanical Engineers
, pp.
93
102
,
ASME Paper No. GT2008-50679
.
24.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
. 10.1017/S0022112095000462
25.
Schneider
,
M.
,
2019
, Robust Aero-Thermal Design of High Pressure Turbines At Uncertain Exit Conditions of Low-Emission Combustion Systems,
Shaker Verlag
,
Düren
.
You do not currently have access to this content.