Abstract
In this study, a parametric analysis of the thermal performance of a nozzle vane cascade with a showerhead cooling system made of four rows of cylindrical holes was carried out by using the pressure-sensitive paint (PSP) technique. Coolant-to-mainstream blowing ratio (BR), density ratio (DR), main flow isentropic exit Mach number (Ma2is), and turbulence intensity level (Tu1) were the considered parameters. The cascade was tested in an atmospheric wind tunnel at Ma2is values ranging from 0.2 to 0.6, with an inlet turbulence intensity level of 1.6% and 9%, at variable injection conditions of BR = 2.0, 3.0, 4.0. Moreover, the influence of the DR on the leading-edge film-cooling performance was investigated: the testing was carried out at DR = 1.0, using nitrogen as foreign gas, and DR = 1.5, with carbon dioxide serving as a coolant. In the near-hole region, higher BR and Ma2is resulted in higher effectiveness, while higher mainstream turbulence intensity reduced the thermal coverage in between the rows of holes, whatever the BR is. Further downstream along the vane pressure side, the effectiveness was negatively affected by rising the BR but positively influenced by lowering the mainstream turbulence intensity. Moreover, a decrease in the DR caused a reduction in the film-cooling performance, whose extent depends on the injection condition.