Abstract

In this study, a parametric analysis of the thermal performance of a nozzle vane cascade with a showerhead cooling system made of four rows of cylindrical holes was carried out by using the pressure-sensitive paint (PSP) technique. Coolant-to-mainstream blowing ratio (BR), density ratio (DR), main flow isentropic exit Mach number (Ma2is), and turbulence intensity level (Tu1) were the considered parameters. The cascade was tested in an atmospheric wind tunnel at Ma2is values ranging from 0.2 to 0.6, with an inlet turbulence intensity level of 1.6% and 9%, at variable injection conditions of BR = 2.0, 3.0, 4.0. Moreover, the influence of the DR on the leading-edge film-cooling performance was investigated: the testing was carried out at DR = 1.0, using nitrogen as foreign gas, and DR = 1.5, with carbon dioxide serving as a coolant. In the near-hole region, higher BR and Ma2is resulted in higher effectiveness, while higher mainstream turbulence intensity reduced the thermal coverage in between the rows of holes, whatever the BR is. Further downstream along the vane pressure side, the effectiveness was negatively affected by rising the BR but positively influenced by lowering the mainstream turbulence intensity. Moreover, a decrease in the DR caused a reduction in the film-cooling performance, whose extent depends on the injection condition.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propulsion Power
,
22
(
2
), pp.
249
271
. 10.2514/1.18034
2.
Nasir
,
S.
,
Bolchoz
,
T.
,
Ng
,
W. F.
, and
Zhang
,
L. J.
,
2012
, “
Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051021
. 10.1115/1.4004200
3.
Mhetras
,
S.
,
Han
,
J. C.
, and
Rudolph
,
R.
,
2012
, “
Effect of Flow Parameters Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
134
(
1
), p.
011004
. 10.1115/1.4003228
4.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2013
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using PSP Measurement Technique
,”
ASME Paper GT 2013-94189
.
5.
Nathan
,
M. L.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2014
, “
Adiabatic and Overall Effectiveness for the Showerhead Film Cooling of a Turbine Vane
,”
ASME J. Turbomach.
,
136
(
3
), p.
031005
. 10.1115/1.4024680
6.
Dyson
,
T. E.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2013
, “
Adiabatic and Overall Effectiveness for a Fully Cooled Turbine Vane
,”
ASME Paper GT2013-94928
.
7.
Chavez
,
K.
,
Slavens
,
T. N.
, and
Bogard
,
D.
,
2016
, “
Effects of Internal and Film Cooling on the Overall Effectiveness of a Fully Cooled Turbine Airfoil With Shaped Holes
,”
ASME Paper GT2016-57992
.
8.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME Paper GT
, pp.
2004
53998
.
9.
Chavez
,
K.
,
Slavens
,
T. N.
, and
Bogard
,
D.
,
2017
, “
Experimentally Measured Effects of Incidence Angles on the Adiabatic and Overall Effectiveness of a Fully Cooled Turbine Airfoil With Shaped Showerhead Holes
,”
ASME J. Turbomach.
,
139
(
9
), p.
091007
. 10.1115/1.4036200
10.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2017
, “
Comparison of RANS and DES Modeling Against Measurements of Leading Edge Film Cooling on a First-Stage Vane
,”
ASME J. Turbomach.
,
139
(
5
), p.
051005
. 10.1115/1.4035161
11.
Barigozzi
,
G.
,
Mosconi
,
S.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2017
, “
The Effect of Hot Streaks on a High Pressure Turbine Vane Cascade With Showerhead Film Cooling
,”
Int. J. Turbomach. Propuls. Power
,
2
(
2
), p.
5
. 10.3390/ijtpp2020005
12.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Scandella
,
D.
,
Mucignat
,
C.
, and
Dolci
,
G.
, “
Assessment of Binary PSP Technique for Film Cooling Effectiveness Measurement on Nozzle Vane Cascade With Cutback Trailing Edge
,”
Exp. Therm. Fluid. Sci.
,
97
, pp.
431
443
. 10.1016/j.expthermflusci.2018.05.015
13.
Han
,
J.-C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.
14.
Zhang
,
L.
,
Baltz
,
M.
,
Pudupatty
,
R.
, and
Fox
,
M.
,
1999
, “
Turbine Nozzle Film Cooling Study Using the Pressure Sensitive Paint (PSP) Technique
,”
ASME Paper 99-GT-196
.
15.
Wiese
,
C. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2018
, “
Experimental Evaluation of Thermal and Mass Transfer Techniques to Measure Adiabatic Effectiveness With Various Coolant to Freestream Property Ratios
,”
ASME J. Turbomach.
,
140
(
2
), p.
021001
. 10.1115/1.4038177
16.
Sant
,
Y. L.
, and
Mérienne
,
M. C.
,
2005
, “
Surface Pressure Measurements by Using Pressure-Sensitive Paints
,”
Aerosp. Sci. Technol.
,
9
(
4
), pp.
285
299
. 10.1016/j.ast.2004.08.008
17.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
. 10.1115/1.4032674
18.
Abdeh
,
H.
,
Miranda
,
M.
,
Rouina
,
S.
, and
Barigozzi
,
G.
,
2017
, “
Development of PSP Technique for Vane Film Cooling Investigations
,”
Energy Procedia
,
126
, pp.
802
809
. 10.1016/j.egypro.2017.08.285
19.
Cutbirth
,
J.
, and
Bogard
,
D.
,
2003
, “
Effects of Coolant Density Ratio on Film Cooling
,”
ASME Paper GT2003-38582
.
You do not currently have access to this content.