Abstract

Surface curvature has been shown to have significant effects on the film cooling performance of round holes, but the literature include few studies of its effects on shaped holes despite their prevalence in gas turbines. Experiments were performed using two rows of holes placed on the suction side of a scaled-up turbine blade in a low Mach number linear cascade wind tunnel with low freestream turbulence. The rows were placed in regions of high and low convex surface curvature. Geometries and flow conditions for the rows were matched to those from previous flat plate studies. Comparison of the adiabatic effectiveness results from the high curvature and flat plate rows revealed the same trends as those in the literature using round holes, with increased performance for the high curvature row at lower blowing ratios and the opposite at higher ones. The low curvature row had similar performance to the flat plate row at lower blowing ratios, suggesting the mild convex curvature had little beneficial effect. At higher blowing ratios, the low curvature row had inferior performance, which was attributed to the local freestream adverse pressure gradient that generated additional turbulence, promoting jet-to-mainstream mixing and decreasing performance.

References

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power.
,
22
(
2
), pp.
249
270
. 10.2514/1.18034
3.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Gas. Turbines. Power.
,
100
(
3
), pp.
476
481
. 10.1115/1.3446382
4.
Schwarz
,
S. G.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G
,
1991
, “
The Influence of Curvature on Film Cooling Performance
,”
ASME J. Turbomach.
,
113
(
3
), pp.
472
478
. 10.1115/1.2927898
5.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
. 10.1115/1.3450752
6.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
David G
,
2000
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
, p.
V003T01A047
,
Paper No. 2000-GT-0239
.
7.
Waye
,
S. K.
, and
Bogard
,
D. G
,
2007
, “
High-Resolution Film Cooling Effectiveness Comparison of Axial and Compound Angle Holes on the Suction Side of a Turbine Vane
,”
ASME J. Turbomach.
,
129
(
2
), pp.
202
211
. 10.1115/1.2448016
8.
Winka
,
J. R.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
, and
Crawford
,
M. E
,
2013
, “
Convex Curvature Effects on Film Cooling Effectiveness
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, p.
V03BT13A047
,
Paper No. GT2013-95243
.
9.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer.
,
127
(
4
), pp.
441
453
, 10.1115/1.1860562
10.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Semmler
,
K.
,
2000
, “
Film Cooling on a Convex Surface With Zero Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer.
,
43
(
16
), pp.
2973
2987
. 10.1016/S0017-9310(99)00346-4
11.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Semmler
,
K.
,
Dittmar
,
J.
, and
Weigand
,
B.
,
2001
, “
An Experimental Investigation of Film Cooling on a Convex Surface Subjected to Favourable Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer.
,
44
(
5
), pp.
939
951
. 10.1016/S0017-9310(00)00158-7
12.
Colban
,
W.
,
Gratton
,
A.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2006
, “
Heat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
128
(
1
), pp.
53
61
, 10.1115/1.2098789
13.
O’Neal
,
O. M.
,
2017
, “
Measurements of Adiabatic Effectiveness From Full Coverage Film Cooling on a Scaled Turbine Vane With Laidback Fanshaped Holes
,” M.S. thesis,
The University of Texas at Austin
,
Austin, TX
, http://hdl.handle.net/2152/64121
14.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, p.
V05BT13A036
,
Paper No. GT2014-25992
.
15.
Kopriva
,
J. E.
,
Laskowski
,
G. M.
, and
Sheikhi
,
M. R. H.
,
2014
, “
Computational Assessment of Inlet Turbulence on Boundary Layer Development and Momentum/Thermal Wakes for High Pressure Turbine Nozzle and Blade
,”
ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, QC, Canada
,
Nov. 14–20
, p.
V08BT10A006
,
Paper No. IMECE2014-38620
.
16.
McClintic
,
J. W.
,
2017
, “
Diffused-Exit Film Cooling Holes Fed by an Internal Crossflow
,”
Ph.D. dissertation
,
The University of Texas at Austin
,
Austin, TX
, https://hdl.handle.net/2152/75533
17.
Anderson
,
J. B.
,
Wilkes
,
E. K.
,
McClintic
,
J. W.
, and
Bogard
,
D. G.
,
2016
, “
Effects of Freestream Mach Number, Reynolds Number, and Boundary Layer Thickness on Film Cooling Effectiveness of Shaped Holes
,”
ASME Turbo Expo 2016: Turbine Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
, p.
V05CT19A003
,
Paper No. GT2016-56152
.
18.
Anderson
,
J. B.
,
2017
, “
Investigation of Approach Flow Parameters, Scaling Factors, and Measurement Accuracy for Film Cooling Effectiveness and Heat Transfer Coefficient Measurements
,”
Ph.D. dissertation
,
The University of Texas at Austin
,
Austin, TX
, https://hdl.handle.net/2152/76038
19.
Schmidt
,
D. L.
, and
Bogard
,
D. G
,
1995
, “
Pressure Gradient Effects on Film Cooling
,”
ASME Turbo Expo 1995: Turbine Technical Conference and Exposition
,
Houston, TX
,
June 5–8
, P.
V004T09A018
,
Paper No. 95-GT-018
.
20.
Moore
,
J. D.
,
2018
, “
Film Effectiveness Performance for a Shaped Hole on the Suction Side of a Scaled-Up Turbine Blade
,” M.S. thesis,
The University of Texas at Austin
,
Austin, TX
.
21.
Kline
,
M.
,
1998
,
Calculus: An Intuitive and Physical Approach
,
Dover Publications Inc.
,
Mineola, NY
.
22.
Back
,
L. H.
,
Cuffel
,
R. F.
, and
Massier
,
P. F
,
1970
, “
Laminarization of a Turbulent Boundary Layer in Nozzle Flow—Boundary Layer and Heat Transfer Measurements With Wall Cooling
,”
ASME J. Heat Transfer.
,
92
(
3
), pp.
333
344
. 10.1115/1.3449668
23.
Moffat
,
R. J
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
24.
Montgomery
,
D. C.
, and
Runger
,
G. C.
,
2003
,
Applied Statistics and Probability for Engineers
,
John Wiley & Sons Inc.
,
New York
.
25.
McClintic
,
J. W
,
2013
, “
Experimental Investigation of Overall Effectiveness and Coolant Jet Interactions on a Fully Cooled C3X Turbine Vane
,” M.S. thesis,
The University of Texas at Austin
,
Austin, TX
, http://hdl.handle.net/2152/22269
26.
Robertson
,
D. R.
,
2004
, “
Roughness Impact on Turbine Vane Suction Side Film Cooling Effectiveness
,” M.S. thesis,
The University of Texas at Austin
,
Austin, TX
.
27.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
28.
Monty
,
J. P.
,
Harun
,
Z.
, and
Marušić
,
I.
,
2011
, “
A Parametric Study of Adverse Pressure Gradient Turbulent Boundary Layers
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
575
585
. 10.1016/j.ijheatfluidflow.2011.03.004
29.
DeGraaff
,
D. B.
, and
Eaton
,
J. K
,
2000
, “
Reynolds-Number Scaling of the Flat-Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
,
422
, pp.
319
346
. 10.1017/S0022112000001713
30.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D. G.
,
2011
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
. 10.1115/1.4002064
31.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2018
, “
The Effect of Area Ratio Change Via Increased Hole Length for Shaped Film Cooling Holes With Constant Expansion Angles
,”
ASME J. Turbomach.
,
140
(
5
), p.
051002
. 10.1115/1.4038871
You do not currently have access to this content.