Abstract

This article investigates the generation of rotor-alone tones and their contribution to the outflow noise of a transonic centrifugal compressor stage with vaneless diffuser and volute by means of unsteady full-annulus computational fluid dynamics (CFD) simulations. The aerodynamic field and the generation and propagation of sound were simulated simultaneously using the unsteady Reynolds-averaged Navier–Stokes (URANS) approach of the solver trace and a numerical grid consisting of 170 M cells. To assess the accuracy of the predicted fluctuations, the investigation compares the simulated diffuser flow field to measured flow angles and pressure fluctuations obtained from experiments conducted on a large-scale test rig. The analysis explains the different sound generation mechanisms responsible for tonal components in the acoustic spectrum at the compressor outlet based on the Fourier decomposition of the pressure fluctuations in diffuser and volute. Furthermore, this article analyzes the modal structure of the simulated sound field at the volute outlet by means of a radial mode analysis and discusses the influence of changing operating conditions on the sound power emitted. The analyses reveal that supersonic flow phenomena occurring at choked operating conditions cause a significant increase in noise emissions. Furthermore, the investigation shows that the sound field at the volute outlet is dominated by few low-order modes, a fact that justifies the analysis using methods based on the compressed sensing in future experimental investigations.

References

1.
Feld
,
H.-J.
,
Aschenbrenner
,
S.
, and
Girsberger
,
R.
,
2001
, “
Investigation of Acoustic Phenomena at the Inlet and the Outlet of a Centrifugal Compressor for Pressure Ratio 4.5
,”
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Paper No. 2001-GT-0314
.
2.
Raitor
,
T.
, and
Neise
,
W.
,
2008
, “
Sound Generation in Centrifugal Compressors
,”
J. Sound Vib.
,
314
(
3–5
), pp.
738
756
. 10.1016/j.jsv.2008.01.034
3.
Habing
,
R.
, and
Feld
,
H.-J.
,
2013
, “
On the Modal Sound Field at the Outlet of a Turbocharger Centrifugal Compressor
,”
10th European Conference on Turbomachienry Fluid dynamics and Thermodynamics
,
Lappeenranta, Finland
,
Apr. 15–19
.
4.
ISO 5136:2003-4 (E)
,
2003
, “
Acoustics – Determination of Sound Power Radiated Into a Duct by Fans and Other Air-Moving Devices – In-Duct Method
”.
5.
Limacher
,
P.
,
Spinder
,
C.
,
Banica
,
M. C.
, and
Feld
,
H.-J.
,
2017
, “
A Robust Industrial Procedure for Measuring Modal Sound Fields in the Development of Radial Compressor Stages
,”
ASME J. Eng. Gas Turb. Power
,
139
(
6
), p.
62604
. 10.1115/1.4035287
6.
Zhou
,
H.
,
Mao
,
Y.
,
Zhang
,
Q.
,
Zhao
,
C.
,
Qi
,
D.
, and
Diao
,
Q.
,
2018
, “
Vibro-Acoustics of a Pipeline Centrifugal Compressor Part I. Experimental Study
,”
Appl. Acoustics
,
131
(
1
), pp.
112
128
. 10.1016/j.apacoust.2017.10.011
7.
Sun
,
H.
,
Shin
,
H.
, and
Lee
,
S.
,
2006
, “
Analysis and Optimization of Aerodynamic Noise in a Centrifugal Compressor
,”
J. Sound Vib.
,
289
(
4
), pp.
999
1018
. 10.1016/j.jsv.2005.03.004
8.
Mendonça
,
F.
,
2012
, “
Simulation of Radial Compressor Aeroacoustics Using CFD
,”
Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
, Vol.
8
, GT2012.
9.
Banica
,
M. C.
,
Limacher
,
P.
,
Feld
,
H. -J.
, and
Spinder
,
C.
,
2017
, “
Numerical Prediction of the Sources and the Modal Content of the Acoustic Field in a Radial Compressor Outflow
,”
ASME J. Eng. Gas Turb. Power
,
139
(
9
), p.
92605
. 10.1115/1.4036284
10.
C. Eldar
,
Y.
, and
Kutyniok
,
G.
,
2012
,
Compressed Sensing: Theory and Applications
,
Cambridge University Press
,
Cambridge, UK
.
11.
Behn
,
M.
,
Kisler
,
R.
, and
Tapken
,
U.
,
2016
, “
Efficient Azimuthal Mode Analysis Using Comperssed Sensing
,”
22nd AIAA/CEAS Aeroacoustics Conference, AIAA
,
Lyon, France
,
May 30–June 1
, AIAA, pp.
2016
3038
.
12.
Behn
,
M.
,
Pardowitz
,
B.
, and
Tapken
,
U.
,
2018
, “
Compressed Sensing Based Radial Mode Analysis of the Broadband Sound Field in a Low-Speed Fan Test Rig
,”
7th Berlin Beamforming Conference BeBeC. BeBeC-2018-D26
,
Berlin, Germany
,
Mar. 5–6
.
13.
Hurst
,
J.
,
Behn
,
M.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2019
, “
Sound Power Measurements at Radial Compressors Using Compressed Sensing Based Signal Processing Methods
,”
Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
, p. GT2019.
14.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
140
(
5
), p.
051011
. 10.1115/1.4038908
15.
DIN EN ISO 5167-3:2003(E)
,
2003
, “
Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full – Part 3: Nozzles and Venturi Nzzles
”.
16.
Nürnberger
,
D.
,
Eulitz
,
F.
,
Schmitt
,
S.
, and
Zachcial
,
A.
,
2001
, “
Recent Progress in the Numerical Simulation of Unsteady Viscous Multistage Turbomachinery Flow
,”
Proceedings of the 15th International Symposium on Air Breathing Engines
,
Bangalore, India
,
Sept. 2–7
.
17.
Ashcroft
,
G.
,
Frey
,
C.
,
Heitkamp
,
K.
, and
Weckmüller
,
C.
,
2012
, “
Advanced Numerical Methods for the Prediction of Tonal Noise in Turbomachinery: Part I—Implicit Runge Kutta Schemes
,”
ASME J. Turbomach.
,
136
(
2
), p.
021002
. 10.1115/1.4023904
18.
Kousen
,
K. A.
,
1999
, “
Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components
,”
National Aeronautics and Space Administration, Glenn Research Center
,
Cleveland, OH
.
19.
Wohlbrandt
,
A.
,
Weckmüller
,
C.
, and
Guérin
,
S.
,
2016
, “
A Robust Extension to the Triple Plane Pressure Mode Matching Method by Filtering Convective Perturbations
,”
Int. J. Aeroacoust.
,
15
(
1–2
), pp.
41
58
. 10.1177/1475472X16630842
20.
Ovenden
,
N.
, and
Rienstra
,
S.
,
2004
, “
Mode-Matching Strategies in Slowly Varying Engine Ducts
,”
AIAA J.
,
42
(
9
), pp.
1832
1840
. 10.2514/1.3253
21.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
(
1
), pp.
309
332
. 10.4271/620532
You do not currently have access to this content.