Abstract

Modern high-pressure turbine (HPT) blade design stands out due to its high complexity comprising three-dimensional blade features, multipassage cooling system (MPCS), and film cooling to allow for progressive thermodynamic process parameters. During the last decade, probabilistic design approaches have become increasingly important in turbomachinery to incorporate uncertainties such as geometric variations caused by manufacturing scatter and deterioration. Within this scope, the first part of this two-part article introduces parametric models for cooled turbine blades that enable probabilistic finite element (FE) analysis taking geometric variability into account to aim at sensitivity and robustness evaluation. The statistical database is represented by a population of more than 400 blades whose external geometry is captured by optical measurement techniques and 34 blades that are digitized by computed tomography (CT) to record the internal geometry and the associated variability, respectively. Based on these data, parametric models for airfoil, profiled endwall (PEW), wedge surface (WSF), and MPCS are presented. The parametric airfoil model that is based on the traditional profile theory is briefly described. In this regard, a methodology is presented that enables to adapt this airfoil model to a given population of blades by means of Monte Carlo-based optimization. The endwall variability of hub and shroud are parametrized by radial offsets that are applied to the respective median endwall geometry. WSFs are analytically represented by planes. Variations of the MPCS are quantified based on the radial distribution of cooling passage centroids. Thus, an individual MPCS can be replicated by applying adapted displacement functions to the core passage centroids. For each feature that is considered within this study, the accuracy of the parametric model is discussed with respect to the variability that is present in the investigated blade population and the measurement uncertainty. Within the scope of the second part of this article, the parametric models are used for a comprehensive statistical analysis to reveal the parameter correlation structure and probability density functions (PDFs). This is required for the subsequent probabilistic finite element analysis involving real geometry effects.

References

1.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
. 10.1115/1.3072494
2.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
. https://doi.org/10.1115/GT2017-63205
3.
Högner
,
L.
,
Voigt
,
M.
,
Mailach
,
R.
,
Meyer
,
M.
, and
Gerstberger
,
U.
,
2020
, “
Probabilistic FE-Analysis of Cooled High Pressure Turbine Blades—Part B: Probabilistic Analysis
,”
ASME J. Turbomach
. 10.1115/1.4047779
4.
Lange
,
A.
,
Vogeler
,
K.
,
Gümmer
,
V.
,
Schrapp
,
H.
, and
Clemen
,
C.
,
2009
, “
Introduction of a Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation
,”
Proceedings of ASME Turbo Expo 2009
,
Orlando, FL
. https://doi.org/10.1115/GT2009-59937
5.
Backhaus
,
T.
,
Maywald
,
T.
,
Schrape
,
S.
,
Voigt
,
M.
, and
Mailach
,
R.
,
2017
, “
A Parametrization Describing Blisk Airfoil Variations Referring to Modal Analysis
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
. https://doi.org/10.1115/GT2017-64243
6.
Heinze
,
K.
,
Meyer
,
M.
,
Scharfenstein
,
J.
,
Voigt
,
M.
, and
Vogeler
,
K.
,
2014
, “
A Parametric Model for Probabilistic Analysis of Turbine Blades Considering Real Geometric Effects
,”
CEAS Aeronaut. J.
,
1
(
5
), pp.
41
51
. 10.1007/s13272-013-0088-6
7.
Voigt
,
P.
,
Högner
,
L.
, and
Backhaus
,
T.
,
2017
,
Blade2Parameter: Geometry Reconstruction User Guide
,
TU Dresden
,
Dresden
.
8.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
Proceedings of the ASME Turbo Expo 2010
,
Glasgow, UK
. https://doi.org/10.1115/GT2010-22484
9.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability and Non-Axisymmetry on High-Pressure Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
112601
. https://doi.org/10.1115/1.4007167
10.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability on Multistage High-Pressure Compressor Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
126011
https://doi.org/10.1115/1.4007167
11.
Scharfenstein
,
J.
,
Heinze
,
K.
,
Voigt
,
M.
,
Vogeler
,
K.
, and
Meyer
,
M.
,
2013
, “
Probabilistic CFD Analysis of High Pressure Turbine Blades Considering Real Geometric Effects
,”
Proceedings of ASME Turbo Expo 2013
,
San Antonio, TX
. https://doi.org/10.1115/GT2013-94161
12.
Heinze
,
K.
,
Vogeler
,
K.
, and
Friedl
,
W.-H.
,
2010
, “
The Impact of Geometric Scatter on High-Cycle-Fatigue of Compressor Blades
,”
Proceedings of ASME Turbo Expo 2010
,
Glasgow, UK
. https://doi.org/10.1115/GT2010-22083
13.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kühhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
. https://doi.org/10.1115/GT2017-63446
14.
Gräsel
,
J.
,
Keskin
,
A.
,
Swoboda
,
M.
,
Przewozny
,
H.
, and
Saxer
,
A.
,
2004
, “
A Full Parametric Model for Turbomachinery Blade Design and Optimisation
,”
Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
. https://doi.org/10.1115/DETC2004-57467
15.
Koini
,
G. N.
,
Sarakinos
,
S. S.
, and
Nikolos
,
I. K.
,
2009
, “
A Software Tool for Parametric Design of Turbomachinery Blades
,”
Adv. Engin. Softw.
,
40
(
1
), pp.
41
51
. 10.1016/j.advengsoft.2008.03.008
16.
Amtsfeld
,
P.
,
Lockan
,
M.
,
Bestle
,
D.
, and
Meyer
,
M.
,
2014
, “
Accelerated 3D Aerodynamic Optimization of Gas Turbine Blades
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
. https://doi.org/10.1115/GT2014-25618
17.
Kamenik
,
J.
,
Voutchkov
,
I.
,
Toal
,
D. J. J.
,
Keane
,
A. J.
,
Högner
,
L.
,
Meyer
,
M.
, and
Bates
,
R.
,
2018
, “
Robust Turbine Blade Optimization in the Face of Real Geometric Variations
,”
J. Propul. Power.
,
34
(
6
), pp.
1479
1493
. 10.2514/1.B37091
18.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
, and
Johann
,
E.
,
2012
, “
Principal Component Analysis on 3D Scanned Compressor Blades for Probabilistic CFD Simulation
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
. https://doi.org/10.2514/6.2012-1762
19.
Poehler
,
T.
,
Niewoehner
,
J.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2015
, “
Investigation of Nonaxisymmetric Endwall Contouring and Three-Dimensional Airfoil Design in a 1.5-Stage Axial Turbine—Part I: Design and Novel Numerical Analysis Method
,”
ASME J. Turbomach.
,
137
(
8
), p.
081009
. 10.1115/1.4029476
20.
Shahpar
,
S.
,
Caloni
,
S.
, and
de Prieëlle
,
L.
,
2017
, “
Automatic Design Optimisation of Profiled Endwalls Including Real Geometrical Effects to Minimize Turbine Secondary Flows
,”
ASME. J. Turbomach.
,
139
(
7
), p.
071010
. https://doi.org/10.1115/1.4035510
21.
Grewe
,
R. P.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2014
, “
The Effect of Endwall Manufacturing Variations on Turbine Performance
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
. https://doi.org/10.1115/GT2014-25326
22.
Thakur
,
N.
,
2010
, “
Probabilistic Manufacturing Variability Quantification From Measurement Data for Robust Design of Turbine Blades
,” Ph.D. thesis,
University of Southampton
,
Southampton, UK
.
23.
Nouri
,
B.
, and
Kühhorn
,
A.
,
2014
, “
Automated CAE Process for Thermo-Mechanical Lifing Prediction of a Parameterized Turbine Blade With Internal Cooling
,”
Proceedings of 5th European Conference on Computational Fluid Dynamics ECFD VI
,
Barcelona, Spain
.
24.
Gameros
,
A.
,
De Chiffre
,
L.
,
Siller
,
H. R.
,
Hiller
,
J.
, and
Genta
,
G.
,
2015
, “
A Reverse Engineering Methodology for Nickel Alloy Turbine Blades With Internal Features
,”
CIRP. J. Manuf. Sci. Technol.
,
9
, pp.
116
124
. 10.1016/j.cirpj.2014.12.001
25.
Backhaus
,
T.
,
Harding
,
M.
,
Schrape
,
S.
,
Voigt
,
M.
, and
Mailach
,
R.
,
2017
, “
Validation Methods for 3D Digitizing Precision Concerning Jet Engine BLISKs
,”
Deutscher Luft- und Raumfahrtkongress
,
Munich, Germany
, p.
450102
.
26.
Högner
,
L.
,
Knebel
,
S.
,
Voigt
,
M.
,
Mailach
,
R.
, and
Meyer
,
M.
,
2017
, “
Quantification of X-Ray Measurement Uncertainty Based on Optical Measurement Data of Turbine Blades
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
. https://doi.org/10.1115/GT2017-63704
27.
Högner
,
L.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Meyer
,
M.
, and
Berridge
,
C.
,
2015
, “
A Curvature Based Algorithm for Treatment of Cooling Holes in Polygon Meshes of Turbine Blades
,”
Proceedings of ASME Turbo Expo 2015
,
Paper No. GT2015
.
28.
Rosenblatt
,
M.
,
1956
, “
Remarks on Some Nonparametric Estimates of a Density Function
,”
Ann. Math. Stat.
,
27
(
3
), pp.
832
837
. 10.1214/aoms/1177728190
29.
Parzen
,
E.
,
1962
, “
On Estimation of a Probability Density Function and Mode
,”
Ann. Math. Stat.
,
33
(
3
), pp.
1065
1076
. 10.1214/aoms/1177704472
30.
Lange
,
A
,
2014
, “
Probabilistische Performanceuntersuchung Eines Hochdruckverdichters Unter Berücksichtigung Geometrischer Variabilität
,” Ph.D. thesis,
TU Dresden
,
Dresden
.
31.
Savitzky
,
A.
, and
Golay
,
M. J.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
. 10.1021/ac60214a047
32.
Pearson
,
K.
,
1920
, “
Notes on the History of Correlation
,”
Biometrika
,
13
(
1
), pp.
25
45
. 10.1093/biomet/13.1.25
33.
Jolliffe
,
I. T.
,
1986
,
Principal Component Analysis and Factor Analysis
,
Principal Component Analysis
(
Springer Series in Statistics
),
Springer
,
New York
, pp.
115
128
.
34.
Voigt
,
P.
,
Högner
,
L.
,
Fiedler
,
B.
,
Voigt
,
M.
,
Mailach
,
R.
,
Meyer
,
M.
, and
Nasuf
,
A.
,
2019
, “
Comprehensive Geometric Description of Manufacturing Scatter of High Pressure Turbine Nozzle Guide Vanes for Probabilistic CFD Analysis
,”
ASME. J. Turbomach.
,
141
(
8
), p.
081002
. https://doi.org/10.1115/1.4042892
You do not currently have access to this content.