Abstract

In this paper, detailed overall cooling effectiveness and associated flow patterns are presented for two distinct film hole distribution patterns over a turbine endwall: an axial-row pattern and an iso-Mach number line row pattern. Measurements, in combination with numerical simulations, are performed in a scaled-up cascade. Thermal protection for the endwall is achieved by jet-array impingement on the cold side and discrete film cooling on the hot-gas side, combined with purge air from an inclined slot that simulates the upstream seal cavity. Infrared (IR) thermography techniques are used to obtain overall effectiveness in a wide range of coolant flow ratios of 1.5–3.8%. Mach numbers at the exit of the vane cascade are 0.25 and 0.70, representing the variations of engine operating conditions. Overall effectiveness measurements and computational flowfields show that the iso-Mach number line hole pattern outperforms the hole pattern with axial rows of holes in terms of overall effectiveness levels and thermodynamic energy losses, regardless of coolant flow ratios. Increasing Mach number increases overall effectiveness levels on the endwall and higher Mach numbers generate higher effectiveness improvement for the iso-Mach number line arrangement, relative to the axial-row configuration. Additionally, adding purge air to the endwall considerably improves the overall effectiveness levels and purge air performs better for the axial-row pattern due to no direct interactions with downstream discrete coolant injection.

References

1.
Town
,
J.
,
Straub
,
D.
,
Black
,
J.
,
Thole
,
K. A.
, and
Shih
,
T. I.-P.
,
2018
, “
State-of-the-Art Cooling Technology for a Turbine Rotor Blade
,”
ASME J. Turbomach.
,
140
(
7
), p.
071007
. 10.1115/1.4039942
2.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
. 10.1115/1.4023826
3.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
. 10.2514/1.16344
4.
Wright
,
L. M.
,
Malak
,
M. F.
,
Crites
,
D. C.
, and
Morris
,
M. C.
,
2014
, “
Review of Platform Cooling Technology for High Pressure Turbine Blades
,” ASME Paper No. GT2014-26373.
5.
Vogel
,
G.
,
2002
, “
Experimental Study on a Heavy Film Cooled Nozzle Guide Vane With Contoured Platforms
,”
Ph.D. thesis
,
École Polytechnique Fédérale de Lausanne
,
Lausanne, Switzerland
.
6.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
. 10.1115/1.2098788
7.
Colban
,
W.
, and
Thole
,
K.
,
2007
, “
Influence of Hole Shape on the Performance of a Turbine Vane Endwall Film-Cooling Scheme
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
341
356
. 10.1016/j.ijheatfluidflow.2006.05.002
8.
Gao
,
Z. H.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
. 10.1115/1.3068327
9.
Sato
,
T.
,
Aoki
,
S.
,
Takeishi
,
K.
, and
Matsuura
,
M.
,
1987
, “
Effect of Three-Dimensional Flow Field on Heat Transfer Problems of a Low Aspect Ratio Turbine Nozzle
,” International Gas Turbine Congress (IGTC) 1987, Paper No. 87-IGTC-59, Tokyo, Japan.
10.
Jabbari
,
M.
,
Marston
,
K.
,
Eckert
,
E.
, and
Goldstein
,
R.
,
1996
, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach.
,
118
(
2
), pp.
278
284
. 10.1115/1.2836637
11.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
. 10.1115/1.2927684
12.
Harasgama
,
S. P.
, and
Burton
,
C. S.
,
1992
, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Part 1—Experimental Technique and Results
,”
ASME J. Turbomach.
,
114
(
4
), pp.
734
740
. 10.1115/1.2928026
13.
Chowdhury
,
N. H. K.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2017
, “
Turbine Vane Endwall Film Cooling Study from Axial-Row Configuration With Simulated Upstream Leakage Flow
,” ASME Paper No. GT2017-63144.
14.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
. 10.1115/1.2840916
15.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1999
, “
The Design of an Improved Endwall Film Cooling Configuration
,”
ASME J. Turbomach.
,
121
(
4
), pp.
772
780
. 10.1115/1.2836731
16.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
. 10.1115/1.1811099
17.
Wu
,
P. S.
, and
Chang
,
S. F.
Vane Endwall Heat Transfer for Smooth and Stepped Inlet Using Streamwise and Cross Stream Film Injection
,” ASME Paper No. GT2007-27850.
18.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J. C.
,
Xu
,
H. Z.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angle
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
. 10.1115/1.4042057
19.
Mensch
,
A.
, and
Thole
,
K. A.
,
2014
, “
Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031901
. 10.1115/1.4025835
20.
Li
,
X. Y.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2017
, “
Experimental Investigation of Endwall Heat Transfer With Film and Impingement Cooling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
101901
. 10.1115/1.4036361
21.
Yang
,
X.
,
Liu
,
Z. S.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z. P.
,
Guo
,
F. S.
,
Ding
,
L.
, and
Simon
,
T. W.
,
2019
, “
Experimental and Numerical Investigations of Overall Cooling Effectiveness on a Vane Endwall With Jet Impingement and Film Cooling
,”
Appl. Therm. Eng.
,
148
, pp.
1148
1163
. 10.1016/j.applthermaleng.2018.11.116
22.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,” ASME Paper No. GT2004-53998.
23.
Yang
,
X.
,
Liu
,
Z. S.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Feng
,
Z. P.
,
Guo
,
F. S.
, and
Ding
,
L.
,
2019
, “
Measurements of Detailed Heat Transfer Characteristics on a High-Pressure Turbine Vane Endwall With Coolant Injection
,”
Exp. Therm. Fluid. Sci.
,
109
, p.
109888
. 10.1016/j.expthermflusci.2019.109888
24.
Hollworth
,
B. R.
, and
Dagan
,
L.
,
1980
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface—Part 1: Average Heat Transfer
,”
ASME J. Eng. Power
,
102
(
4
), pp.
994
999
. 10.1115/1.3230372
25.
Yang
,
X.
,
Feng
,
Z. P.
, and
Simon
,
T. W.
,
2019
, “
Conjugate Heat Transfer Modeling of Turbine Vane Endwall With Thermal Barrier Coatings
,”
Aeronaut. J.
,
123
(
1270
), pp.
1959
1981
. 10.1017/aer.2019.56
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
27.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
A.
,
2001
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
110
125
. 10.1111/j.1749-6632.2001.tb05846.x
28.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
. 10.1115/1.2960953
29.
Cho
,
H. H.
, and
Rhee
,
D. H.
,
2003
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling System
,”
ASME J. Turbomach.
,
123
(
3
), pp.
601
608
. 10.1115/1.1344904
30.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2015
, “
Effect of Film Extraction on Impingement Heat Transfer Characteristics of Jet Arrays on Spherical-Dimpled Surfaces
,” ASME Paper No. GT2015-42585.
31.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
. 10.1115/1.4006290
32.
Yang
,
X.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071701
. 10.1115/1.4029817
33.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2002
, “
Effects of Nonuniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
,
124
(
4
), pp.
623
631
. 10.1115/1.1505849
34.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1995
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
. 10.1115/1.2841006
35.
Hay
,
N.
,
Lampard
,
D.
, and
Benmansour
,
S.
,
1983
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes
,”
ASME J. Eng. Gas Turbines Power
,
105
(
2
), pp.
243
248
. 10.1115/1.3227408
36.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Semmler
,
K.
,
Naik
,
S.
, and
Weigand
,
B.
,
2001
, “
Film Cooling on a Convex Surface: Influence of External Pressure Gradient and Mach Number on Film Cooling Performance
,”
Heat Mass Transfer
,
38
(
1
), pp.
7
16
. 10.1007/s002310000149
37.
Anderson
,
J. B.
,
Wikes
,
E. K.
,
McClintic
,
J. W.
, and
Bogard
,
D. G.
Effects of Freestream Mach Number, Reynolds Number and Boundary Layer Thickness on Film Cooling Effectiveness of Shaped Holes
,” ASME Paper No. GT2016-56152.
38.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
11
), p.
061007
. 10.1115/1.4006287
39.
Ligrani
,
P. M.
,
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Shock Wave-Film Cooling Interactions in Transonic Flows
,”
ASME J. Turbomach.
,
123
(
4
), pp.
788
797
. 10.1115/1.1397305
40.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Perdichizzi
,
A. G.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2017
, “
Aero-Thermal Performance of a Nozzle Vane Cascade With a Generic Non-Uniform Inlet Flow Condition—Part II: Influence of Purge and Film Cooling Injection
,”
ASME J. Turbomach.
,
139
(
10
), p.
101004
. 10.1115/1.4036437
41.
Kost
,
F.
, and
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements
,” ASME Paper No. 2001-GT-0145.
You do not currently have access to this content.