Abstract

Turbine disc cooling is required to protect vulnerable components from exposure to the high temperatures found in the mainstream gas path. Purge air, bled from the latter stages of the compressor, is introduced to the turbine wheelspace at low radius before exiting through the rim-seal at the periphery of the discs. The unsteady, complex flowfield that arises from the interaction between the purge and mainstream gases modifies the structure of secondary flows within the blade passage. A computational study was conducted using an unsteady Reynolds-averaged Navir–Stokes (RANS) solver, modeling an engine-representative turbine stage. Preliminary results were validated using experimental data from a test rig. The baseline secondary flowfield was described, in the absence of purge flow, demonstrating the classical rollup of the horseshoe vortex and subsequent convection of the two legs downstream. The unsteady behavior of the model was investigated and addressed, resulting in recommendations for modeling interaction phenomena in turbines. A superposed purge flow, resulting in egress through the upstream rim-seal, was shown to modify the secondary flowfield in the turbine annulus. The most notable effect of egress was the formation of a large plume forming near the pressure minima associated with the blade suction surface. The egress was turned by the mainstream flow, creating a vortical structure consistent in rotational direction to the pressure-side leg of the horseshoe vortex; the pressure-side leg was subsequently strengthened and showed an increased radial migration relative to the unpurged case. The egress plume was also shown to overwhelm the suction-side leg of the horseshoe vortex, reducing its strength.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
2.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
. 10.1115/1.3239704
3.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
. 10.1111/j.1749-6632.2001.tb05839.x
4.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
. 10.1115/1.3262089
5.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2009
, “
The Application of Non-Axisymmetric Endwall Contouring in a Single Stage, Rotating Turbine
,”
Proceedings of ASME Turbo Expo
,
Orlando, FL
,
June 8–12, 2009
, pp.
831
840
.
6.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2010
, “
The Performance of a Generic Nonaxisymmetric End Wall in a Single Stage, Rotating Turbine at on and Off-Design Conditions
,”
Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air, GT 2010
,
Glasgow, United Kingdom
,
June 14–18, 2010
, pp.
1069
1080
.
7.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
. 10.1115/1.2841006
8.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2005
, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With End Wall Profiling
,”
ASME J. Turbomach.
,
127
(
1
), pp.
209
214
. 10.1115/1.1812321
9.
Sieverding
,
C. H.
, and
Van den Bosche
,
P.
,
1983
, “
The use of Coloured Smoke to Visualize Secondary Flows in a Turbine-Blade Cascade
,”
J. Fluid Mech.
,
134
(
1
), pp.
85
89
. 10.1017/S0022112083003237
10.
Schreiner
,
B. D. J.
,
Wilson
,
M.
,
Li
,
Y. S.
, and
Sangan
,
C. M.
,
2019
, “
Design of Contoured Turbine Endwalls in the Presence of Purge Flow: A Feature-Based Approach
,”
Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery
,
Phoenix, AZ
,
June 17–21
, ASME, p. V02BT40A007. https://doi.org/10.1115/GT2019-90443
11.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
,
Maritano
,
M.
, and
Abram
,
R.
,
2013
, “
Purge Flow and Interface Gap Geometry Influence on the Aero-Thermal Performance of a Rotor Blade Cascade
,”
Int. J. Heat Fluid Flow
,
44
, pp.
563
575
. 10.1016/j.ijheatfluidflow.2013.08.012
12.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
. https://doi.org/10.1115/1.4023015
13.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
. https://doi.org/10.1115/1.4000485
14.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2009
, “
Influence of Rim Seal Purge Flow on Performance of an Endwall-Profiled Axial Turbine
,”
Proceedings of ASME Turbo Expo 2009
,
Orlando, FL
,
June 8–12, 2009
, pp.
943
956
.
15.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2012
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, pp.
1509
1519
.
16.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2009
, “
Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,”
ASME J. Turbomach.
,
131
(
1
), p.
011004
. https://doi.org/10.1115/1.2950052
17.
Popović
,
I.
, and
Hodson
,
H. P.
,
2012
, “
The Effects of a Parametric Variation of the Rim Seal Geometry on the Interaction Between Hub Leakage and Mainstream Flows in Hp Turbines
,”
Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 4: Heat Transfer, Parts A and B
,
Copenhagen, Denmark
,
June 11–15
, ASME, pp.
1823
1833
. https://doi.org/10.1115/GT2012-68025.
18.
MacIsaac
,
G. D.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Grover
,
E. A.
, and
Jurek
,
R.
,
2013
, “
Effects Of Simplified Platform Overlap and Cavity Geometry on The Endwall Flow: Measurements and Computations in a Low-Speed Linear Turbine Cascade
,”
Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 6A: Turbomachinery
,
San Antonio, TX
,
June 3–7
, ASME, p. V06AT36A035. https://doi.org/10.1115/GT2013-95670
19.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
. https://doi.org/10.1115/1.4023016
20.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
. 10.2514/1.16344
21.
Jones
,
R. R.
,
Pountney
,
O. J.
,
Cleton
,
B. L.
,
Wood
,
L. E.
,
Schreiner
,
B. D. J.
,
Carvalho Figueiredo
,
A. J.
,
Scobie
,
J. A.
,
Cleaver
,
D. J.
,
[Q10]Lock
,
G. D.
, and
Sangan
,
C. M.
,
2019
, “
A New Single-Stage Turbine Facility for Investigating Non-Axisymmetric Contoured Endwalls in the Presence Of Purge Flow
,”
ASME J. Turbomach.
,
141
(
12
), p.
121008
. https://doi.org/10.1115/1.4045087
22.
Schreiner
,
B. D. J.
,
2019
, “
Computational Modelling of Gas Turbine Aerodynamics With Endwall Contouring
,”
PhD thesis
,
University of Bath
,
Bath, United Kingdom
.
23.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams and Convergence Zones in Turbulent Flows
,”
Centre for Turbulence Research Proceedings of the Summer Program
, pp.
193
208
.
You do not currently have access to this content.