Abstract

Film cooling and internal passage cooling play a fundamental role in turbine blade cooling. As the cooling holes are fed by the internal crossflow, interaction of these both cooling strategies is implicated. The influence of film hole extraction on the internal flow field and heat transfer of a ribbed cooling channel is investigated in this study. Therefore, a rectangular cooling channel (AR = 2:1) is equipped with parallel ribs of four different geometries (90 deg ribs, 60 deg ribs, 60 deg V-shaped ribs, and 60 deg Λ-shaped ribs) and also with bleed holes at varying positions between the ribs. The different geometrical configurations are examined using 2D-particle image velocimetry (PIV) for flow measurements and transient thermochromic liquid crystal (TLC) technique for heat transfer measurements. Depending on the rib-induced heat transfer pattern, cooling hole positions in the rib segments are found, which can enhance passage internal heat transfer. 90 deg and 60 deg ribs show the best results for upstream hole positions regardless of the lateral positioning. V and Λ ribs reveal a benefit for lateral positioned cooling holes near the upstream rib.

References

1.
McClintic
,
J. W.
,
Klavetter
,
S. R.
,
Winka
,
J. R.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2015
, “
The Effect of Internal Crossflow on the Adiabatic Effectiveness of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
,
137
(
7
), p.
071006
. 10.1115/1.4029157
2.
McClintic
,
J. W.
,
Wilkes
,
E. K.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2015
, “
Near-Hole Thermal Field Measurements for Round Compound Angle Film Cooling Holes Fed by Cross-Flow
,” ASME Paper No. GT2015-43949.
3.
Stratton
,
Z. T.
,
Shih
,
T. I-P.
,
Laskowski
,
G. M.
,
Barr
,
B.
, and
Briggs
,
R.
,
2015
, “
Effects of Crossflow in an Internal-Cooling Channel on Film Cooling of a Flat Plate Through Compound-Angle Holes
,” ASME Paper No. GT2015-42771.
4.
Agata
,
Y.
,
Takahashi
,
T.
,
Sakai
,
E.
, and
Nishino
,
K.
,
2012
, “
Effects of Turbulence Promoters of Gas Turbine Blades on Film Cooling Performance
,”
J. Therm. Sci. Technol.
,
7
(
4
), pp.
603
618
. 10.1299/jtst.7.603
5.
Agata
,
Y.
,
Takahashi
,
T.
,
Sakai
,
E.
, and
Nishino
,
K.
,
2013
, “
Effect of Orientation of Internal Turbulence Promoting Ribs on Flow Characteristics for Film Cooling
,”
J. Therm. Sci. Technol.
,
8
(
1
), pp.
15
27
. 10.1299/jtst.8.15
6.
Klavetter
,
S. R.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2016
, “
The Effect of Rib Turbulators on Film Cooling Effectiveness of Round Compound Angle Holes Fed by an Internal Cross-Flow
,”
ASME J. Turbomach.
,
138
(
12
), p.
121006
. 10.1115/1.4032928
7.
Ye
,
L.
,
Liu
,
C. L.
,
Zhu
,
H. R.
,
Luo
,
J. X.
, and
Zhai
,
Y. N.
,
2017
, “
Investigations on the Influence of Rib Orientation Angle on Film Cooling Performance of Cylindrical Holes
,” ASME Paper No. GT2017-63968.
8.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coeffcient of Film Cooling Holes With Varying Angles of Inclination and Orientation
,”
ASME J. Turbomach.
,
123
(
4
), pp.
781
787
. 10.1115/1.1397306
9.
Heneka
,
C.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2011
, “
Influence of Internal Parallel and V-shaped Ribs on the Discharge Coefficient of a Cylindrical Film Cooling Hole
,”
Proc. IMechE Part A: J. Power Energy
,
225
(
7
), pp.
985
994
. 10.1177/0957650911410926
10.
Sakai
,
E.
, and
Takahashi
,
T.
,
2011
, “
Experimental and Numerical Study on Effects of Turbulence Promoters on Flat Plate Film Cooling
,” ASME Paper No. GT2011-45196.
11.
Bunker
,
R. S.
, and
Bailey
,
J. C.
,
2001
, “
Film Cooling Discharge Coefficient Measurements in a Turbulated Passage With Internal Crossflow
,”
ASME J. Turbomach.
,
123
(
4
), pp.
774
780
. 10.1115/1.1397307
12.
Fox
,
D. W.
,
Jones
,
F. B.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2019
, “
Rib Turbulator Effects on Crossflow-Fed Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
141
(
3
), p.
031013
. 10.1115/1.4041673
13.
Shen
,
J. R.
,
Wang
,
Z.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
Byerley
,
A. R.
,
1996
, “
Heat Transfer Enhancement Within a Turbine Blade Cooling Passage Using Ribs and Combinations of Ribs With Film Cooling Holes
,”
ASME J. Turbomach.
,
118
(
3
), pp.
428
434
. 10.1115/1.2836683
14.
Ekkad
,
S. V.
,
Huang
,
Y.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators and Bleed Holes
,”
Int. J. Heat Mass Transfer
,
41
(
23
), pp.
3781
3791
. 10.1016/S0017-9310(98)00099-4
15.
Chanteloup
,
D.
, and
Bölcs
,
A.
,
2002
, “
Flow Characteristics in Two-Leg Internal Coolant Passages of Gas Turbine Airfoils With Film-Cooling Hole Ejection
,”
ASME J. Turbomach.
,
124
(
3
), pp.
499
507
. 10.1115/1.1480412
16.
Chanteloup
,
D.
, and
Bölcs
,
A.
,
2002
, “
Experimental Investigation of Heat Transfer in Two-Pass Coolant Passages With Ribs and Film Cooling Hole Ejection
,” ASME-CIE-ES02 Conference Paper No. DETC2002/CIE-34417.
17.
Thurman
,
D.
, and
Poinsatte
,
P.
,
2001
, “
Experimental Heat Transfer and Bulk Air Temperature Measurements for a Multipass Internal Cooling Model With Ribs and Bleed
,”
ASME J. Turbomach.
,
123
(
1
), pp.
90
96
. 10.1115/1.1333090
18.
Kunze
,
M.
, and
Vogeler
,
K.
,
2013
, “
Flow Field Investigations on the Effect of Rib Placement in a Cooling Channel With Film-Cooling
,”
ASME J. Turbomach.
,
136
(
3
), p.
031009
. 10.1115/1.4024691
19.
Liu
,
X.
,
Tao
,
Z.
,
Ding
,
S.
, and
Xu
,
G.
,
2013
, “
Experimental Investigation of Heat Transfer Characteristics in a Variable Cross-Sectioned Two-Pass Channel With Combined Film Cooling Holes and Inclined Ribs
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1186
1193
. 10.1016/j.applthermaleng.2012.08.001
20.
Böttger
,
M.
,
Lange
,
M.
,
Mailach
,
R.
, and
Vogeler
,
K.
,
2019
, “
Experimental Study on the Influence of the Streamwise Position of Film Hole Extraction in Internal Ribbed Cooling Channels of Turbine Blades
,”
J. Global Power Propul. Soc.
,
3
, pp.
580
591
. 10.33737/jgpps/110621
21.
Kunze
,
M.
,
2013
, “
Einfluss der Rippenposition in einem Kühlkanal auf die Filmkühlung und den inneren Wärmeübergang
,” Schriftenreihe aus dem Institut für Strömungsmechanik, Band 5, TUDpress, ISBN 978-3-944331-39-3.
22.
Özisik
,
M. N.
,
1993
,
Heat Conduction
,
John Wiley & Sons, Inc.
,
New York
.
23.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,” NATO Advisory Group Aeronautical RD AGARDOGRAPH, 165.
24.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
590
596
. 10.1115/1.2910606
25.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-pass Square Channels With Rib Turbulators
,”
Int. J. Heat Transfer Mass Transfer
,
40
(
11
), pp.
2525
2537
. 10.1016/S0017-9310(96)00318-3
You do not currently have access to this content.