Abstract

This study describes a detailed investigation on the effects that upstream step misalignment and upstream purge film cooling have on the endwall heat transfer for first stage nozzle guide vanes (NGVs) in a gas turbine at transonic conditions. Endwall Nusselt number and adiabatic film-cooling effectiveness distributions were experimentally measured and compared with flow visualization. Tests were conducted in a transonic linear cascade blowdown facility at an inlet freestream turbulence intensity of 16%, an exit Mach number of 0.85, and an exit Re = 1.5 × 106 based on axial chord. Varied upstream purge blowing ratios (BRs) and a no-blowing case were tested for three different upstream step geometries, the baseline (no misalignment), a span-wise upstream step of +4.86% span, and a step of −4.86% span. Experimentation shows that compared with no-blowing case, the addition of upstream purge film cooling increases the Nusselt number at injection upward of 50% but lowers it in the passage throat by approximately 20%. The backward facing step induces more turbulent mixing between the coolant and mainstream flows, thus reducing film effectiveness coverage and increasing Nusselt number by nearly 40% in the passage throat. In contrast, the presence of a forward step creates a more stable boundary layer for the coolant flow aiding to help keep the film attached to the endwall. Increasing the blowing ratio increases film-cooling effectiveness and endwall coverage up to a certain point, beyond which, the high momentum of the coolant results in poor cooling performance due to jet liftoff.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
,
1954
, A
Visualization Study of Secondary Flows in Cascades
, Vol.
1163
,
National Advisory Committee for Aeronautics
.
3.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1986
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
. 10.1115/1.3262089
4.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turb. Power
,
99
(
1
), pp.
21
28
. 10.1115/1.3446247
5.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Trans.
,
110
(
4a
), pp.
862
869
. 10.1115/1.3250586
6.
Jílek
,
J.
,
1986
, “
An Experimental Investigation of the Three-Dimensional Flow Within Large Scale Turbine Cascades
,”
Proceedings of the ASME 1986 International Gas Turbine Conference and Exhibit
,
Dusseldorf, West Germany
,
June 8–12, 1996
,
ASME Paper No. 86-GT-170
. 10.1115/86-gt-170
7.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Gas Turb. Power
,
102
(
2
), pp.
257
267
. 10.1115/1.3230246
8.
Kang
,
M. B.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
,
122
(
3
), pp.
458
466
. 10.1115/1.1303703
9.
Ames
,
F. E.
,
Barbot
,
P. A.
, and
Wang
,
C.
,
2003
, “
Effects of Aeroderivative Combustor Turbulence on Endwall Heat Transfer Distributions Acquired in a Linear Vane Cascade
,”
ASME J. Turbomach.
,
125
(
2
), pp.
210
220
. 10.1115/1.1559897
10.
Panchal
,
K. V.
,
Abraham
,
S.
,
Roy
,
A.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
, and
Crawford
,
M. E.
,
2017
, “
Effect of Endwall Contouring on a Transonic Turbine Blade Passage: Heat Transfer Performance
,”
ASME J. Turbomach.
,
139
(
1
), p.
011009
. 10.1115/1.4034411
11.
Laveau
,
B.
,
Abhari
,
R. S.
,
Crawford
,
M. E.
, and
Lutum
,
E.
,
2015
, “
High Resolution Heat Transfer Measurements on the Stator Endwall of an Axial Turbine
,”
ASME J. Turbomach.
,
137
(
4
), p.
041005
. 10.1115/1.4028431
12.
Fu
,
Z. Y.
,
Zhu
,
H. R.
,
Liu
,
C. L.
,
Liu
,
C.
, and
Li
,
Z.
,
2016
, “
An Experimental Investigation of Full-Coverage Film Cooling Effectiveness and Heat Transfer Coefficient of a Turbine Guide Vane in a Linear Transonic Cascade
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17, 2016
,
ASME Paper No. GT2016–56839
. 10.1115/gt2016-58132
13.
Shiau
,
C. C.
,
Chowdhury
,
N. H.
,
Yang
,
S. F.
,
Han
,
J. C.
,
MirzaMoghadam
,
A.
, and
Riahi
,
A.
,
2016
, “
Heat Transfer Coefficients and Film Cooling Effectiveness of Transonic Turbine Vane Suction Surface Using TSP Technique
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17, 2016
,
ASME Paper No. GT2016-56264
. 10.1115/gt2016-56264
14.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
. 10.1115/1.2927684
15.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041007
. 10.1115/1.4002965
16.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
. 10.1115/1.4037909
17.
Saxena
,
R.
,
Alqefl
,
M. H.
,
Liu
,
Z.
,
Moon
,
H. K.
,
Zhang
,
L.
, and
Simon
,
T. W.
,
2016
, “
Contoured Endwall Flow and Heat Transfer Experiments with Combustor Coolant and Gap Leakage Flows for a Turbine Nozzle Guide Vane
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17, 2016
,
ASME Paper No. GT2016-56675
. 10.1115/gt2016-56675
18.
Papa
,
M.
,
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2012
, “
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041014
. 10.1115/1.4003725
19.
Mayo
,
D. E.
,
Arisi
,
A.
,
Ng
,
W. F.
,
Li
,
Z.
,
Li
,
J.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2017
, “
Effect of Combustor-Turbine Platform Misalignment on the Aerodynamics and Heat Transfer of an Axisymmetric Converging Vane Endwall at Transonic Conditions
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
,
ASME Paper No. GT2017-65091
. 10.1115/gt2017-65091
20.
Li
,
Z.
,
Liu
,
L.
,
Li
,
J.
,
Sibold
,
R. A.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121008
.
21.
Zhang
,
L.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step
,”
Proceedings of the ASME Turbo Expo 2003
,
Atlanta, GA
,
June 16–19, 2003
,
ASME Paper No. GT2003-38319
. 10.1115/gt2003-38319
22.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade with Purge Flow
,”
ASME J. Turbomach
,
138
(
10
), p.
101007
. 10.1115/1.4032925
23.
Nasir
,
S.
,
Bolchoz
,
T.
,
Ng
,
W. F.
,
Zhang
,
L. J.
,
Koo Moon
,
H.
, and
Anthony
,
R. J.
,
2012
, “
Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051021
. 10.1115/1.4004200
24.
Abraham
,
S.
,
Panchal
,
K.
,
Xue
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Brown
,
B. J.
, and
Malandra
,
A.
,
2010
, “
Experimental and Numerical Investigations of a Transonic, High Turning Turbine Cascade with a Divergent Endwall
,”
Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
,
ASME Paper No. FEDSM-ICNMM2010-30393
. 10.1115/fedsm-icnmm2010-30393
25.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
. 10.1115/1.4001366
26.
Popp
,
O.
,
Smith
,
D. E.
,
Bubb
,
J. V.
,
Grabowski
,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
2000
, “
Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade: Part II—Unsteady Heat Transfer
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11, 2000
,
ASME Paper No. 2000-GT-0203
. 10.1115/2000-gt-0203
27.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W. F.
, and
Thole
,
K. A.
,
2002
, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade
,”
Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11, 2000
,
ASME Paper No. GT2002-30523
. 10.1115/gt2002-30523
28.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat-Transfer Gages-A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
. 10.2514/3.3486
29.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
. 10.1115/1.4029098
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
31.
Loving
,
D. L.
, and
Katzoff
,
S.
,
1959
, “
The Fluorescent-Oil Film Method and Other Techniques for Boundary-Layer Flow Visualization
,”
NASA Report No. NASA-MEMO-3-17-59L
.
You do not currently have access to this content.