Abstract

Casting deviations introduce geometric variability that impacts the aerodynamic performance of turbomachinery. These effects are studied for a high-pressure turbine rotor blade from a modern aero-engine. A sample of 197 blades were measured using structured-light three-dimensional scanning, and the performance of each blade is quantified using Reynolds-averaged Navier–Stokes (RANS) simulations. Casting variation is typically managed by applying geometric tolerances to determine the suitability of a component for service. The analysis demonstrates that this approach may not be optimal since it does not necessarily align with performance, in particular the capacity and efficiency. Alternatively, functional acceptance based on the predicted performance of each blade removes the uncertainty associated with geometric tolerancing and gives better performance control. Building on these findings, the paper proposes a method to set the orientation of the fir-tree, which is machined after casting. By customizing the alignment of each blade, performance variability and scrap rates can be significantly reduced. The method uses predictions of performance to reorient the castings to compensate for manufacturing-induced errors, without changing the design-intent blade geometry and with minimal changes to the manufacturing facility.

References

1.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
. 10.1115/1.1622715
2.
Lamb
,
C. T.
, and
Darmofal
,
D. L.
,
2004
, “
Performance-Based Geometric Tolerancing of Compressor Blades
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air
,
Vienna, Austria
.
June 14–17, 2004
,
ASME Paper No. GT2004-53592
, pp.
203
210
.
3.
Duffner
,
J. D.
,
2008
, “
The Effects of Manufacturing Variability on Turbine Vane Performance
,”
M.Sc. thesis
,
Massachusetts Institute of Technology
. https://dspace.mit.edu/handle/1721.1/57599
4.
Heinze
,
K.
,
Meyer
,
M.
,
Scharfenstein
,
J.
,
Voigt
,
M.
, and
Vogeler
,
K.
,
2014
, “
A Parametric Model for Probabilistic Analysis of Turbine Blades Considering Real Geometric Effects
,”
CEAS Aeronaut. J.
,
5
(
1
), pp.
41
51
. 10.1007/s13272-013-0088-6
5.
Högner
,
L.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Meyer
,
M.
, and
Berridge
,
C.
,
2015
, “
A Curvature Based Algorithm for Treatment of Cooling Holes in Polygon Meshes of Turbine Blades
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
,
ASME Paper No. GT2015-42841, V02BT39A025
. 10.1115/gt2015-42841
6.
Goodhand
,
M. N.
,
Miller
,
R. J.
, and
Lung
,
H. W.
,
2015
, “
The Impact of Geometric Variation on Compressor Two-Dimensional Incidence Range
,”
ASME J. Turbomach.
,
137
(
2
), p.
021007
. 10.1115/1.4028355
7.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2012
, “
The Impact of Real Geometries on Three-Dimensional Separations in Compressors
,”
ASME J. Turbomach.
,
134
(
2
), p.
021007
. 10.1115/1.4002990
8.
Högner
,
L.
,
Nasuf
,
A.
,
Voigt
,
P.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Meyer
,
M.
,
Berridge
,
C.
, and
Goenaga
,
F.
,
2016
, “
Analysis of High Pressure Turbine Nozzle Guide Vanes Considering Geometric Variations
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
,
ASME Paper No. GT2016-57502, V02CT45A025
. 10.1115/gt2016-57502
9.
Grewe
,
R. P.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2014
, “
The Effect of Endwall Manufacturing Variations on Turbine Performance
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
,
ASME Paper No. GT2014-25326, V02CT38A008
. 10.1115/gt2014-25326
10.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2004
, “
On the Aerodynamic Design of Compressor Airfoils for Robustness Under Geometric Uncertainty
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
,
ASME Paper No. GT2004-53581
, pp.
191
202
. 10.1115/gt2004-53581
11.
Kamenik
,
J.
,
Voutchkov
,
I.
,
Toal
,
D. J. J.
,
Keane
,
A. J.
,
Högner
,
L.
,
Meyer
,
M.
, and
Bates
,
R.
,
2018
, “
Robust Turbine Blade Optimization in the Face of Real Geometric Variations
,”
AIAA J. Propul. Power
,
34
(
6
), pp.
1479
1493
. doi/10.2514/1.B37091
12.
Dow
,
E. A.
, and
Wang
,
Q.
,
2014
, “
Simultaneous Robust Design and Tolerancing of Compressor Blades
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
,
ASME Paper No. GT2014-25795, V02BT45A007
. 10.1115/gt2014-25795
13.
Dow
,
E. A.
, and
Wang
,
Q.
,
2015
, “
The Implications of Tolerance Optimization on Compressor Blade Design
,”
ASME J. Turbomach.
,
137
(
10
), p.
101008
. 10.1115/1.4030791
14.
Lee
,
W. Y.
,
Dawes
,
W. N.
,
Coull
,
J. D.
, and
Goenaga
,
F.
,
2018
, “
The Impact of Manufacturing Variability on High Pressure Turbine Profile Loss
,”
Proceedings of the 2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
8–12 Jan. 2018
, AIAA Paper No. AIAA 2018-2121.
15.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,”
Proceedings of the ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference
,
Atlanta, GA
,
June 16–19
, ASME Paper No. GT2003-38698, pp.
579
590
. 10.1115/gt2003-38698
16.
Milli
,
A.
, and
Shahpar
,
S.
,
2012
, “
PADRAM: Parametric Design and Rapid Meshing System for Complex Turbomachinery Configurations
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
, ASME Paper No. GT2012-69030, pp.
2135
2148
. 10.1115/gt2012-69030
17.
Moinier
,
P.
, and
Giles
,
M. B.
,
1998
, “
Preconditioned Euler and Navier-Stokes Calculations on Unstructured Meshes
,”
Proceedings of the 6th ICFD Conference on Numerical Methods for Fluid Dynamics
,
Oxford, UK
,
Mar. 31–Apr. 3 1998
.
18.
Zamboni
,
G.
, and
Adami
,
P.
,
2016
, “
On the Unsteady Interaction Between the Leakage and the Main Passage Flow in a High Pressure Turbine Rig: CFD URANS Investigations and Comparison With the Rig Test Data
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
,
ASME Paper No. GT2016-56041, V02BT38A002
. 10.1115/gt2016-56041
You do not currently have access to this content.