Abstract

To enhance solution accuracy with high-order methods, an implicit solver using the discontinuous Galerkin (DG) discretization on unstructured mesh has been developed. The DG scheme is favored chiefly due to its distinctive feature of achieving a higher-order accuracy by simple internal sub-divisions of a given mesh cell. It can thus relieve the burden of mesh generation for local refinement. The developed method has been assessed in several test cases. First, an examination on the mesh-dependency with different DG orders for discretization has demonstrated the expected mesh convergence order of accuracy correlation. The flow around a cylinder solved with up to the fifth-order accuracy demonstrates the need for a high-order geometrical representation corresponding to the high-order flow field discretization. A calculated turbulent flat plate boundary layer demonstrates the capability of the high-order DG in capturing the laminar sub-layer for a given coarse mesh (y + >20) without a wall function, in a clear contrast to a conventional second-order scheme. The focal test case of the present work is a high-pressure (HP) turbine cascade with the flow losses being strongly influenced by both the laminar separation induced transition on the blade suction surface and the secondary flow development in the endwall region. Fully turbulent RANS solutions consistently overpredict the losses, which can be significantly reduced by an empirically specified transition at a mid-chord point. Of particular interest is a contrasting behavior of pure laminar flow solutions. A steady laminar flow solution is difficult to converge, and even when converging, tends to give an unrealistically large separation. On the other hand when the laminar solution is run in a time-accurate unsteady mode, a qualitatively different flow pattern emerges. The separated shear layer is then shown to lead to coherently shed unsteady vortices with a net entrainment from the main stream to the near-wall region. The resultant time-averaged near-wall flow then effectively becomes a reattached boundary layer. Both overall and distributed losses computed from unsteady laminar solutions are shown to be consistently much better than the fully turbulent RANS solutions. It is remarkable and quite unexpected that for such a seemingly complex 3D flow problem, the straightforward unsteady laminar solutions with no empirical input seem to be comparable with (or slightly better than) the tripped RANS with empirical input.

References

1.
Jimbo
,
T.
,
Biswas
,
D.
, and
Niizeki
,
Y.
,
2012
, “
Studies on Unsteady Flow Characteristics in a High Pressure Turbine Cascade Based on a High-Order Large Eddy Simulation Turbulence Model
,”
ASME J. Turbomach.
,
134
(
5
), p.
051018
. 10.1115/1.4003974
2.
Marty
,
J.
,
Lantos
,
N.
,
Michel
,
B.
, and
Bonneau
,
V.
,
2015
, “
LES and Hybrid RANS/LES Simulations of Turbomachinery Flows Using High Order Methods
,”
ASME Paper No. GT2015-42134
.
3.
Read
,
W. H.
, and
Hill
,
T. R.
,
1973
, “
Triangular Mesh Methods for the Neutron Transport Equations
,”
Technical Report LA-UR-73-479
,
Los Alamos Scientific Laboratory
.
4.
Cockburn
,
B.
, and
Shu
,
C. W.
,
1998
, “
The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems
,”
J. Comput. Phys.
,
141
(
2
), pp.
199
224
. 10.1006/jcph.1998.5892
5.
Bassi
,
F.
, and
Rebay
,
S.
,
1997
, “
A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
131
(
2
), pp.
267
279
. 10.1006/jcph.1996.5572
6.
Vincent
,
P. E.
,
Castonguay
,
P.
, and
Jameson
,
A.
,
2011
, “
A New Class of High-Order Energy Stable Flux Reconstruction Schemes
,”
J. Sci. Comput.
,
47
(
1
), pp.
50
72
. 10.1007/s10915-010-9420-z
7.
Bassi
,
F.
,
Crivellini
,
A.
,
Rebay
,
S.
, and
Savini
,
M.
,
2005
, “
Discontinuous Galerkin Solution of the Reynolds-Averaged Navier-Stokes and k-w Turbulence Model Equations
,”
Comput. Fluids
,
34
(
4–5
), pp.
507
540
. 10.1016/j.compfluid.2003.08.004
8.
Ghidoni
,
A.
,
Colombo
,
A.
,
Rebay
,
S.
, and
Bassi
,
F.
,
2013
, “
Simulation of the Transitional Flow in a Low Pressure Gas Turbine Cascade With a High-Order Discontinuous Galerkin Method
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071101
. 10.1115/1.4024107
9.
Bassi
,
F.
,
Botti
,
L.
,
Colombo
,
A.
,
Crivellini
,
A.
,
Franchina
,
N.
, and
Ghidoni
,
A.
,
2016
, “
Assessment of a High-Order Accurate Discontinuous Galerkin Method for Turbomachinery Flows
,”
Int. J. Comput. Fluid Dyn.
,
30
(
4
), pp.
307
328
. 10.1080/10618562.2016.1198783
10.
Cui
,
J.
,
Rao
,
V. N.
, and
Tucker
,
P.
,
2017
, “
Numerical Investigation of Secondary Flows in a High-Lift Low Pressure Turbine
,”
Int. J. Heat Fluid Flow
,
63
, pp.
149
157
. 10.1016/j.ijheatfluidflow.2016.05.018
11.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade: Part I—Flow and Secondary Vorticity Fields Under Varying Inlet Condition
,”
ASME Paper No. GT2018-76233
.
12.
Marconcini
,
M.
,
Pacciani
,
R.
,
Arnone
,
A.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade With Variable Inlet Conditions: Part II—Loss Generation
,”
ASME Paper No. GT2018-76450
.
13.
De Wiart
,
C. C.
,
Hillewaert
,
K.
, and
Geuzaine
,
P.
,
2012
, “
DNS of a Low Pressure Turbine Blade Computed With the Discontinuous Galerkin Method
,”
ASME Paper No. GT2012-68900
.
14.
Hillewaert
,
K.
,
de Wiart
,
C. C.
,
Verheylewegen
,
G.
, and
Arts
,
T.
,
2014
, “
Assessment of a High-Order Discontinuous Galerkin Method for the Direct Numerical Simulation of Transition at Low-Reynolds Number in the T106C High-Lift Low Pressure Turbine Cascade
,”
ASME Paper No. GT2014-26739
.
15.
De Wiart
,
C. C.
,
Hillewaert
,
K.
,
Lorriaux
,
E.
, and
Verheylewegen
,
G.
,
2015
, “
Development of a Discontinuous Galerkin Solver for High-Quality Wall-Resolved/Modelled DNS and LES for Practical Turbomachinery Flows on Fully Unstructured Meshes
,”
ASME Paper No. GT2015-43428
.
16.
Garai
,
A.
,
Diosady
,
L.
,
Murman
,
S.
, and
Madavan
,
N.
,
2015
, “
DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method
,”
ASME Paper No. GT2015-42773
.
17.
Garai
,
A.
,
Diosady
,
L. T.
,
Murman
,
S. M.
, and
Madavan
,
N. K.
,
2016
, “
DNS of Low-Pressure Turbine Cascade Flows With Elevated Inflow Turbulence Using a Discontinuous-Galerkin Spectral-Element Method
,”
ASME Paper No. GT2016-56700
.
18.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
. 10.1115/1.2929299
19.
He
,
L.
,
1998
, “
Unsteady Flow in Oscillating Turbine Cascades: Part 2—Computational Study
,”
ASME J. Turbomach.
,
120
(
2
), pp.
269
275
. 10.1115/1.2841402
20.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modelling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
. 10.2514/1.42362
21.
Liou
,
M. S.
,
2006
, “
A Sequel to AUSM, Part II: AUSM+- Up for all Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
. 10.1016/j.jcp.2005.09.020
22.
Moro
,
D.
,
Nguyen
,
N. C.
, and
Peraire
,
J.
,
2011
, “
Navier-Stokes Solution Using Hybridizable Discontinuous Galerkin Methods
,”
AIAA Paper No. 2011-3407
.
23.
Persson
,
P. O.
, and
Peraire
,
J.
,
2008
, “
Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations
,”
SIAM J. Sci. Comput.
,
30
(
6
), pp.
2709
2733
. 10.1137/070692108
24.
Geuzaine
,
C.
, and
Remacle
,
J. F.
,
2009
, “
Gmsh: a Three-Dimensional Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,”
Int. J. Numer. Meth. Eng.
,
79
(
11
), pp.
1309
1331
. 10.1002/nme.2579
25.
Landmann
,
B.
,
2008
, “
A Parallel Discontinuous Galerkin Code for the Navier-Stokes and Reynolds-Averaged Navier-Stokes Equations
,”
Ph.D. thesis
,
University of Stuttgart
.
26.
Thom
,
A.
,
1933
, “
The Flow Past Circular Cylinders at Low Speeds
,”
Proc. R. Soc. Lond., Ser A.
,
141
(
845
), pp.
651
669
. 10.1098/rspa.1933.0146
27.
He
,
L.
,
2017
, “
Multiscale Block Spectral Solution for Unsteady Flows
,”
Int. J. Numer. Meth. Fluids
,
86
(
10
), pp.
655
678
. 10.1002/fld.4472
28.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part II Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
. 10.1115/1.555446
29.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
. 10.1115/1.3262163
30.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
,
114
(
1
), pp.
173
183
. 10.1115/1.2927981
31.
Cleak
,
J. G. E.
, and
Gregory-Smith
,
D. G.
,
1992
, “
Turbulence Modeling for Secondary Flow Prediction in a Turbine Cascade
,”
ASME J. Turbomach.
,
114
(
3
), pp.
590
598
. 10.1115/1.2929183
32.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2005
, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With End Wall Profiling
,”
ASME J. Turbomach.
,
127
(
1
), pp.
209
214
. 10.1115/1.1812321
33.
Moore
,
H.
, and
Gregory-Smith
,
D. G.
,
1996
, “
Transition Effects on Secondary Flows in a Turbine Cascade
,”
ASME Paper No. 96-GT-100
.
34.
Yao
,
M.
, and
He
,
L.
,
2017
, “
High-Order Simulation of Turbomachinery Flow Using a Discontinuous Galerkin Method
,”
Global Power and Propulsion Society
,
Paper No. 2017-0201
.
35.
Kiran
,
K. N.
, and
Anish
,
S.
,
2017
, “
An Investigation on the Effect of Pitchwise Endwall Design in a Turbine Cascade at Different Incidence Angles
,”
Aerosp. Sci. Technol.
,
71
, pp.
382
391
. 10.1016/j.ast.2017.09.032
36.
Ning
,
W.
, and
He
,
L.
,
2001
, “
Some Modeling Issues on Trailing-Edge Vortex Shedding
,”
AIAA J.
,
39
(
5
), pp.
787
793
. 10.2514/2.1411
37.
He
,
L.
, and
Yi
,
J.
,
2017
, “
Two-Scale Methodology for URANS/Large Eddy Simulation Solutions of Unsteady Turbomachinery Flows
,”
ASME J. Turbomach.
,
139
(
10
), p.
101012
. 10.1115/1.4036765
38.
Hartland
,
J.
,
2001
, “
Secondary Loss Reduction in Rotor Blades by Non-Axisymmetric End-Wall Profiling
,”
Ph.D. thesis
,
University of Durham
.
You do not currently have access to this content.