Abstract

The aim of this research is to study the stall and recovery behavior of a transonic fan stage with and without inlet distortion. For this purpose, simulations of the stall and recovery process of NASA stage 67 are performed with clean and distorted inflow conditions. The rotor is pushed into stall by closing the exit nozzle. It is shown that in both cases, stall is initiated via spike but the subsequent development of the stall differs. In the stable rotating stall, both cases contain one stall cell traveling at 63% shaft speed. During the recovery process, when the exit nozzle is gradually opened, the size of this stall cell reduces as the corrected mass flow increases. Although the fan stalls at a larger mass flow with inlet distortion, it recovers to a similar corrected mass flow as the case with clean inflow, which indicates that inlet distortion has minor effects on the recovery process for this blade. In spite of the lack of data, detailed analysis based on past experience and physical reasoning is used to demonstrate the validity on numerical simulations. The author appreciates that a validated computational fluid dynamics (CFD) study can provide instructive results to other researchers.

References

1.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
. 10.1115/1.4031473
2.
Day
,
I. J.
, and
Cumpsty
,
N. A.
,
1978
, “
The Measurement and Interpretation of Flow Within Rotating Stall Cells in Axial Compressors
,”
J. Mech. Eng. Sci.
,
20
(
2
), pp.
101
114
. 10.1243/JMES_JOUR_1978_020_017_02
3.
Small
,
C. J.
, and
Lewis
,
J. T.
,
1985
, “
High Speed Compressor Rig as a Stall Recovery Research Tool
”,
AIAA-85-1428
.
4.
Copenhaver
,
W. T.
, and
Okiishi
,
T. H.
,
1993
, “
Rotating Stall Performance and Recoverability of a High-Speed, Ten-Stage Axial Flow Compressor
,”
J. Propul. Power
,
9
(
2
), pp.
281
292
. 10.2514/3.23620
5.
Anderson
,
S. J.
, and
Smith
,
N. H. S.
,
2006
, “Analysis of Unsteady Casing Pressure Measurements During Surge and Rotating Stall,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
K. C.
Hall
,
R. E.
Kielb
and
J. P.
Thomas
, eds.,
Springer
,
Dordrecht
, pp.
293
312
.
6.
Choi
,
M.
, and
Vahdati
,
M.
,
2011
, “
Recovery Process From Rotating Stall in a Fan
,”
J. Propul. Power
,
27
(
6
), pp.
1161
1168
. 10.2514/1.46847
7.
Lee
,
K.
,
Dodds
,
J.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan—Part II: Unsteady Analysis
,”
ASME J. Turbomach.
,
140
(
5
), p.
051009
. 10.1115/1.4039052
8.
Lee
,
K.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2019
, “
Effects of Inlet Disturbances on Fan Stability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051014
. 10.1115/1.4042204
9.
Strazisar
,
A.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,”
NASA Report No. TP 2879
.
10.
Zhang
,
W.
, and
Vahdati
,
M.
,
2017
, “
Influence of the Inlet Distortion on Fan Stall Margin at Different Rotational Speed
,”
GPPS Conference
,
Shanghai, China
,
Oct. 31–Nov. 1
,
Paper. No. 2017-0207
.
11.
Stapelfeldt
,
S.
,
Parry
,
T.
, and
Vahdati
,
M.
,
2015
, “
Validation of Time-Domain Single-Passage Methods for the Unsteady Simulation of a Contra-Rotating Open Rotor
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
229
(
5
), pp.
443
453
. 10.1177/0957650915596279
12.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
. 10.1115/1.4028558
13.
Zhao
,
F.
,
Dodds
,
J.
, and
Vahdati
,
M.
,
2018
, “
Poststall Behavior of a Multistage High Speed Compressor at Off-Design Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121002
. 10.1115/1.4041142
14.
Sayma
,
A. I.
,
Vahdati
,
M.
,
Sbardella
,
L.
, and
Imregun
,
M.
,
2000
, “
Modeling of Three-Dimensional Viscous Compressible Turbomachinery Flows Using Unstructured Hybrid Grids
,”
AIAA J.
,
38
(
6
), pp.
945
954
. 10.2514/2.1062
15.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
. 10.1115/1.1861912
16.
Choi
,
M.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2011
, “
Effects of Fan Speed on Rotating Stall Inception and Recovery
,”
ASME J. Turbomach.
,
133
(
4
), p.
041013
. 10.1115/1.4003243
17.
Zhang
,
W.
, and
Vahdati
,
M.
,
2018
, “
A Parametric Study of the Effects of Inlet Distortion on Fan Aerodynamic Stability
,”
ASME J. Turbomach.
,
141
(
1
), p.
011011
. 10.1115/1.4041376
18.
Jahnen
,
W.
,
Peters
,
T.
, and
Fottner
,
L.
,
1999
, “
Stall Inception in a 5-Stage HP-Compressor With Increased Load Due to Inlet Distortions
,”
ASME Paper No. 99-GT-440
.
19.
Perovic
,
D.
,
Hall
,
C. A.
, and
Gunn
,
E. J.
,
2015
, “
Stall Inception in a Boundary Layer Ingesting Fan
,”
ASME Paper No. GT2015-43025
.
20.
He
,
L.
,
1997
, “
Computational Study of Rotating-Stall Inception in Axial Compressors
,”
J. Propul. Power
,
13
(
1
), pp.
31
38
. 10.2514/2.5147
21.
Day
,
I. J.
,
Breuer
,
T.
,
Escuret
,
J.
,
Cherrett
,
M.
, and
Wilson
,
A.
,
1999
, “
Stall Inception and the Prospects for Active Control in Four High Speed Compressors
,”
ASME J. Turbomach.
,
121
(
1
), pp.
18
27
. 10.1115/1.2841229
22.
Mazzawy
,
R. S.
,
1977
, “
Multiple Segment Parallel Compressor Model for Circumferential Flow Distortion
,”
ASME J. Eng. Power
,
99
(
2
), pp.
288
296
. 10.1115/1.3446288
23.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
. 10.1115/1.3446138
You do not currently have access to this content.