The objective of this study is to examine the effect of the geometrical modification of the land on the overall film cooling effectiveness on the cutback region of a turbine blade model. A room-temperature experiment was conducted, in which nitrogen serves as the cooling stream, and the mainstream flow is air. The adiabatic film cooling effectiveness was mapped employing the pressure-sensitive paint (PSP) technique. Data was acquired at five different blowing ratios (from 0.45 to 1.65) for both the baseline and the modified model. Detailed film cooling effectiveness from PSP measurements in correlation with the flow map in streamwise and spanwise planes from particle image velocimetry (PIV) measurements was performed, characterizing the effect of rounding the edges of the lands. The results show that the rounded edges enable the coolant flow to reach the top surface of the land area more readily, especially at low blowing ratios. Superior coolant coverage on the land surface observed in the PSP measurements are well correlated with the PIV measurements. At the high blowing ratio of 1.65, the round edge of the lands helps regulate the mixing between the coolant and mainstream flows, therefore the film cooling effectiveness in the slot region is also improved.

References

1.
Wright
,
L. M.
,
Blake
,
S.
,
Rhee
,
D. H.
, and
Han
,
J. C.
,
2009
, “
Effect of Upstream Wake With Vortex on Turbine Blade Platform Film Cooling With Simulated Stator-Rotor Purge Flow
,”
ASME J. Turbomach.
,
131
(
2
), p.
021017
.
2.
Gao
,
Z.
,
Narzary
,
D.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2007
, “
Upstream Vortex Effect on Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow
,”
ASME International Mechanical Engineering Congress and Exposition
,
Seattle, WA
, Paper No. IMECE2007-41717.
3.
Teng
,
S.
,
Sohn
,
D. K.
, and
Han
,
J. C.
,
2000
, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
(
2
), pp.
340
347
.
4.
Ou
,
S.
,
Han
,
J. C.
,
Mehendale
,
A. B.
, and
Lee
,
C. P.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection. Part I: Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
,
116
(
4
), pp.
721
729
.
5.
Burns
,
W.
, and
Stollery
,
J.
,
1969
, “
The Influence of Foreign Gas Injection and Slot Geometry on Film Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
12
(
8
), pp.
935
951
.
6.
Taslim
,
M. E.
,
Spring
,
S. D.
, and
Mehlman
,
B. P.
,
1992
, “
Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries
,”
J. Thermophys. Heat Transfer
,
6
(
2
), pp.
302
307
.
7.
Uzol
,
O.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Aerodynamic Loss Characteristics of a Turbine Blade With Trailing Edge Coolant Ejection: Part 1—Effect of Cut-Back Length, Spanwise Rib Spacing, Free-Stream Reynolds Number, and Chordwise Rib Length on Discharge Coefficients
,”
ASME J. Turbomach.
,
123
(
2
), pp.
238
248
.
8.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
Aerodynamic Loss Characteristics of a Turbine Blade With Trailing Edge Coolant Ejection: Part 2—External Aerodynamics, Total Pressure Losses, and Predictions
,”
ASME J. Turbomach.
,
123
(
2
), pp.
249
257
.
9.
Holloway
,
S. D.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part 1, Steady Framework for Experimental and Computational Results
,”
ASME Turbo Expo
,
Amsterdam, The Netherlands
, Paper No. GT-2002-30471.
10.
Holloway
,
S. D.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part 2, Unsteady Framework for Experimental and Computational Results
,”
ASME Turbo Expo
,
Amsterdam, The Netherlands
, Paper No. GT-2002-30472.
11.
Martini
,
P.
, and
Schulz
,
A.
,
2004
, “
Experimental and Numerical Investigation of Trailing Edge Film Cooling by Circular Wall Jets Ejected From a Slot With Internal Rib Arrays
,”
ASME J. Turbomach.
,
126
(
2
), pp.
229
236
.
12.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2005
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(
1
), pp.
196
205
.
13.
Choi
,
J.
,
Mhetras
,
S.
,
Han
,
J.
,
Lau
,
S.
, and
Rudolph
,
R.
,
2008
, “
Film Cooling and Heat Transfer on Two Cutback Trailing Edge Models With Internal Perforated Blockages
,”
ASME J. Heat Transfer
,
130
(
1
), p.
012201
.
14.
Fiala
,
N.
,
Jaswal
,
I.
, and
Ames
,
F.
,
2009
, “
Letterbox Trailing Edge Heat Transfer: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
132
(
1
), p.
011017
.
15.
Benson
,
M.
,
Elkins
,
C.
,
Yapa
,
S.
,
Ling
,
J.
, and
Eaton
,
J.
,
2012
, “
Effects of Varying Reynolds Number, Blowing Ratio, and Internal Geometry on Trailing Edge Cutback Film Cooling
,”
Exp. Fluids
,
52
(
6
), pp.
1415
1430
.
16.
Dellimore
,
K. H.
,
Marshall
,
A. W.
, and
Cadou
,
C. P.
,
2010
, “
Influence of Compressibility on Film-Cooling Performance
,”
J. Thermophys. Heat Transfer
,
24
(
3
), pp.
506
515
.
17.
Medic
,
G.
, and
Durbin
,
P. A.
,
2005
, “
Unsteady Effects on Trailing Edge Cooling
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
388
392
.
18.
Joo
,
J.
, and
Durbin
,
P. A.
,
2009
, “
Simulation of Turbine Blade Trailing Edge Cooling
,”
ASME J. Fluid Eng.
,
131
(
2
), p.
021102
.
19.
Yang
,
Z.
, and
Hu
,
H.
,
2011
, “
Study of Trailing-Edge Cooling Using Pressure Sensitive Paint Technique
,”
AIAA J. Propul. Power
,
27
(
3
), pp.
700
709
.
20.
Yang
,
Z.
, and
Hu
,
H.
,
2012
, “
An Experimental Investigation on the Trailing Edge Cooling of Turbine Blades
,”
Propul. Power Res.
,
1
(
1
), pp.
36
47
.
21.
Benson
,
M.
,
Yapa
,
S. D.
,
Elkins
,
C.
, and
Eaton
,
J. K.
,
2012
, “
Experimental-Based Redesigns for Trailing Edge Film Cooling of Gas Turbine Blades
,”
ASME J. Turbomach.
,
135
(
4
), p.
041018
.
22.
Wong
,
T. H.
,
Ireland
,
P. T.
, and
Self
,
K. P.
,
2015
, “
Film Cooling Effectiveness Measurements on Engine Representative Trailing Edge Slots Including Cutback Surface Protuberances
,”
Proceedings of 11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics ETC11
,
Madrid, Spain
,
Mar. 23–27
, pp.
1
12
.
23.
Wong
,
T. H.
,
Ireland
,
P. T.
, and
Self
,
K. P.
,
2016
, “
Film Cooling Effectiveness Downstream of Trailing Edge Slots Including Cutback Surface Protuberances
,”
Int. J. Turbomach. Propuls. Power
,
1
(
4
), pp.
1
15
.
24.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
, “
Experimental Methods
,”
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, pp.
540
559
.
25.
Soloff
,
S. M.
,
Adrian
,
R. J.
, and
Liu
,
Z. C.
,
1997
, “
Distortion Compensation for Generalized Stereoscopic Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1441
1454
.
26.
Han
,
J. C.
, and
Rallabandi
,
A.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.
27.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
28.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kahler
,
C. J.
,
Wereley
,
S. T.
,
Kompenhans
,
J.
,
2018
, “
PIV Uncertainty and Measurement Accuracy
,”
Particle Image Velocimetry
,
Springer
,
Cham
, pp.
203
241
.
29.
Benson
,
M. J.
,
2011
, “
3D Velocity and Scalar Field Diagnostics Using Magnetic Resonance Imaging With Application in Film-Cooling
,”
Ph.D. dissertation
,
Stanford University
,
CA
.
You do not currently have access to this content.