The increasing demands on jet engines require progressive thermodynamic process parameters, which typically lead to higher aerothermal loadings and accordingly to designs with high complexity. State-of-the-art high-pressure turbine (HPT) nozzle guide vane (NGV) design involves vane profiles with three-dimensional features including a high amount of film cooling and profiled endwalls (PEWs). Typically, the specific mass flow, also called capacity, which governs the engine's operation, is set by the HPT NGV. Hence, geometric variations due to manufacturing scatter of the HPT NGV's passage can affect relevant aerodynamic quantities and the entire engine behavior. Within the traditional deterministic design approach, the influences of those geometric variations are covered by conservative assumptions and engineering experience. This paper addresses the consideration of variability due to the manufacturing of HPT NGVs through probabilistic CFD investigations. To establish a statistical database, 80 HPT NGVs are digitized with a high precision optical 3D scanning system to record the outer geometry. The vane profiles are parametrized by a section-based approach. For this purpose, traditional profile theory is combined with a novel method that enables the description of NGV profile variability taking the particular leading edge (LE) shape into account. Furthermore, the geometric variability of PEWs is incorporated by means of principle component analysis (PCA). On this basis, a probabilistic system assessment including a sensitivity analysis in terms of capacity and total pressure loss coefficient is realized. Sampling-based methods are applied to conduct a variety of 3D CFD simulations for a typical population of profile and endwall geometries. This probabilistic investigation using realistic input parameter distributions and correlations contributes to a robust NGV design in terms of relevant aerodynamic quantities.

References

1.
Voigt
,
M.
,
Vogeler
,
K.
,
Mücke
,
R.
, and
Oevermann
,
M.
,
2004
, “
Probabilistic Lifetime Analysis for Turbine Blades Based on a Combined Direct Monte Carlo and Response Surface Approach
,”
ASME Turbo Expo 2004: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
. GT2004-53439.
2.
Moeckel
,
C. W.
,
Darmofal
,
D. L.
,
Kingston
,
T. R.
, and
Norton
,
R. J. G.
,
2007
, “
Toleranced Designs of Cooled Turbine Blades Through Probabilistic Thermal Analysis of Manufacturing Variability
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
. GT2007-28009.
3.
Heinze
,
K.
,
Vogeler
,
K.
, and
Friedl
,
W.-H.
,
2010
, “
The Impact of Geometric Scatter on High-Cycle-Fatigue of Compressor Blades
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
. GT2010-22083.
4.
Duffner
,
J. D.
,
2008
, “
The Effect of Manufacturing Variability on Turbine Vane Performance
,” Master's thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
5.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2010
, “
Probabilistic CDF Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, GT2010-22484.
6.
Scharfenstein
,
J.
,
Heinze
,
K.
,
Voigt
,
M.
,
Vogeler
,
K.
, and
Meyer
,
M.
,
2013
, “
Probabilistic CFD Analysis of High Pressure Turbine Blades Considering Real Geometry Effects
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, GT2013-94161.
7.
Lange
,
A.
,
Vogeler
,
K.
,
Gömmer
,
V.
,
Schrapp
,
H.
, and
Clemen
,
C.
,
2009
, “
Introduction of a Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, GT2009-59937.
8.
Heinze
,
K.
,
Meyer
,
M.
,
Scharfenstein
,
J.
,
Voigt
,
M.
, and
Vogeler
,
K.
,
2014
, “
A Parametric Model for Probabilistic Analysis of Turbine Blades Considering Real Geometric Effects
,”
CEAS Aeronaut. J.
,
5
(
1
), pp.
41
51
.
9.
Povey
,
T.
,
Sharpe
,
M.
, and
Rawlinson
,
A.
,
2011
, “
Experimental Measurements of Gas Turbine Flow Capacity Using a Novel Transient Technique
,”
ASME J. Turbomach.
,
133
(
1
),
011005
.
10.
Högner
,
L.
,
Voigt
,
P.
,
Nasuf
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Meyer
,
M.
,
Berridge
,
C.
, and
Goenaga
,
F.
,
2016
, “
Analysis of High Pressure Turbine Nozzle Guide Vanes Considering Geometric Variations
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
, GT2016-57502.
11.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
, and
Johann
,
E.
,
2012
, “
Principal Component Analysis on 3D Scanned Compressor Blades for Probabilistic CFD Simulation
,”
14th AIAA Non-Deterministic Approaches Conference
,
Honolulu, Hawaii
.
12.
GOM GmbH
, “
Precise Industrial 3D Metrology
,” http://www.gom.com/index.html.
13.
Högner
,
L.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Meyer
,
M.
, and
Berridge
,
C.
,
2015
, “
A Curvature Based Algorithm for Treatment of Cooling Holes in Polygon Meshes of Turbine Blades
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
, GT2015-42841.
14.
Aurenhammer
,
F.
,
1991
, “
Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure
,”
ACM Comput. Surv.
,
23
(
3
), pp.
345
405
.
15.
Parzen
,
E.
,
1962
,
“On Estimation of a Probability Density Function and Mode
,”
Ann Math Stat
,
23
, pp.
1065
1076
.
16.
Spearman
,
C.
,
1904
, “
The Proof and Measurement of Association Between Two Things
,”
Am. J. Psychol.
,
15
(
1
), pp.
72
101
.
17.
Jolliffe
,
I.
,
2002
,
Principal Component Analysis
, 2nd ed.,
Springer Verlag
,
New York
, ISBN 978–0387954424.
18.
Cattel
,
R. B.
,
1966
, “
The Scree Test for the Number of Factors
,”
Multivariate. Behav. Res.
,
1
(
2
), pp.
245
276
.
19.
Schmidt
,
R.
,
Voigt
,
M.
, and
Vogeler
,
K.
,
2014
, “
Extension of Latin Hypercube Samples While Maintaining the Correlation Structure
,”
Proceedings of 12th International Probabilistic Workshop
, BAUHAUS-UNIVERSITATSVERLAG,
Weimar, Germany
, ISBN 978-3-95773-183-8.
20.
Bucher
,
C.
,
2009
,
Computational analysis of randomness in structural mechanics: structures and infrastructures 3
.
CRC Press
,
Boca Raton, FL
, ISBN 978-0415403542.
21.
Beschorner
,
A.
,
Voigt
,
M.
,
Chehab
,
E.
, and
Vogeler
,
K.
,
2014
, “
Monte Carlo Cross-Validation for Response Surface Benchmark
,”
12th International Probabilistic Workshop
, BAUHAUS-UNIVERSITATSVERLAG,
Weimar, Germany
, ISBN 978-3-95773-183-8.
You do not currently have access to this content.