Current design-cycle Reynolds-averaged Navier–Stokes (RANS) based computational fluid dynamics (CFD) methods have the tendency to over-predict corner-stall events for axial-flow compressors operating at off-design conditions. This shortcoming has been demonstrated even in simple single-row cascade configurations. Here we report on the application of hybrid RANS/large eddy simulation (LES), or detached eddy simulation (DES), for simulating the corner-stall data from the linear compressor cascade work conducted at Ecole Centrale de Lyon. This benchmark data set provides detailed loss information while also revealing a bimodal behavior of the separation which, not surprisingly, is also not well modeled by RANS. The hybrid RANS/LES results presented here predict bimodal behavior similar to the data only when special treatment is adopted to resolve the leading-edge endwall region where the horseshoe vortex (HV) forms. The (HV) is shown to be unstable, which produces the bimodal instability. The DES simulation without special treatment or refinement in the HV region fails to predict the bimodal instability, and thus the bimodal behavior of the separation. This, in turn, causes a gross over-prediction in the scale of the corner-stall. The HV region is found to be unstable with rolling of the tertiary vortex (TV) over the secondary vortex and merging with the primary HV. With these flow dynamics realized in the DES simulations, the corner stall characteristics are found to be in better agreement with the experimental data, as compared to RANS and standard DES approaches.

References

1.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
2.
Délery
,
J. M.
,
2001
, “
Robert Legendre and Henry Werle: Toward the Elucidation of Three-Dimensional Separation
,”
Annu. Rev. Fluid Mech.
,
33
, pp.
129
154
.
3.
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
,
2004
, “
Ideas and Methods of Turbomachinery Aerodynamics: A Historical View
,”
AIAA J. Propul. Power
,
20
(
1
), pp.
15
26
.
4.
Dong
,
Y.
,
Gallimore
,
S. J.
, and
Hodson
,
H. P.
,
1987
, “
Three-Dimensional Flows and Loss Reduction in Axial Compressors
,”
ASME J. Turbomach.
,
109
(
3
), pp.
354
361
.
5.
Hah
,
C.
, and
Loellbach
,
J.
,
1999
, “
Development of Hub Corner Stall and Its Influence on the Performance of Axial Compressor Blade Rows
,”
ASME J. Turbomach.
,
121
(
1
), pp.
67
77
.
6.
Lei
,
V.-M.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
.
7.
Zhang
,
Y.
,
Mahallati
,
A.
, and
Benner
,
M.
,
2014
, “
Experimental and Numerical Investigation of Corner Stall in a Highly-Loaded Compressor Cascade
,”
ASME
Paper No. GT2014-27204.
8.
Gao
,
F.
,
2014
, “
Advanced Numerical Simulation of Corner Separation in a Linear Compressor Cascade
,”
Ph.D. thesis
, Ecole Centrale de Lyon, Écully, France.https://www.theses.fr/2014ECDL0008.pdf
9.
Ma
,
W.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Leboeuf
,
F.
,
2013
, “
Intermittent Corner Separation in a Linear Compressor Cascade
,”
Exp. Fluids
,
54
(
1546
), pp.
1
17
.
10.
Zambonini
,
G.
, and
Ottavy
,
X.
,
2015
, “
Unsteady Pressure Investigation of Corner Separation Flow in a Linear Compressor Cascade
,”
ASME
Paper No. GT2015-42073.
11.
Zambonini
,
G.
,
Ottavy
,
X.
, and
Kriegseis
,
J.
,
2016
, “
Corner Separation Dynamics in a Linear Compressor Cascade
,”
ASME
Paper No. GT2016-56454.
12.
Gao
,
F.
,
Zambonini
,
G.
,
Boudet
,
J.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Shao
,
L.
,
2015
, “
Unsteady Behavior of Corner Separation in a Compressor Cascade: Large Eddy Simulation and Experimental Study
,”
J. Power Energy
,
229
(
5
), p.
508519
.
13.
Devenport
,
W. J.
, and
Simpson
,
R. L.
,
1990
, “
Time-Dependent and Time-Averaged Turbulence Structure Near the Nose of a Wing-Body Junction
,”
J. Fluid Mech.
,
210
(
1
), pp.
23
55
.
14.
Praisner
,
T. J.
, and
Smith
,
C. R.
,
2006
, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer―Part I: Temporal Behavior
,”
ASME J. Turbomach.
,
128
(
4
), pp.
747
754
.
15.
Paik
,
J.
,
Escauriaza
,
C.
, and
Sotiropoulos
,
F.
,
2007
, “
On the Bimodal Dynamics of the Turbulent Horseshoe Vortex System in a Wing-Body Junction
,”
Phys. Fluids
,
19
(
4
), p.
045107
.
16.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
17.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schultze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the k–ω Shear Stress Transport Model
,”
Flow, Turbul. Combust.
,
88
(
3
), pp.
431
449
.
18.
Liu
,
Y.
,
Yan
,
H.
, and
Lu
,
L.
,
2015
, “
Investigation of Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME
Paper No. GT2015-42902.
19.
Ma
,
W.
,
Gao
,
F.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Wang
,
A. J.
,
2016
, “
Numerical Investigation of Intermittent Corner Separation in a Linear Compressor Cascade
,”
ASME
Paper No. GT2016-57311.
20.
Ni
,
R. H.
,
1982
, “
A Multiple Grid Scheme for Solving the Euler Equations
,”
AIAA J.
,
20
(
11
), pp.
1565
1571
.
21.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
23.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerosp.
,
1
, pp.
5
21
.
24.
Chen
,
H. C.
, and
Patel
,
V. C.
,
1988
, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
,
26
(
6
), pp.
641
648
.
25.
Hellsten
,
A.
,
2005
, “
New Advanced k-Omega Turbulence Model for High-Lift Aerodynamics
,”
AIAA J.
,
43
(
9
), pp.
1857
1869
.
You do not currently have access to this content.