The present study aims to understand the flow, turbulence, and heat transfer in a single row narrow impingement channel for gas turbine heat transfer applications. Since the advent of several advanced manufacturing techniques, narrow wall cooling schemes have become more practical. In this study, the Reynolds number based on jet diameter was 15,000, with the jet plate having fixed jet hole diameters and hole spacing. The height of the channel is three times the impingement jet diameter. The channel width is four times the jet diameter of the impingement hole. The dynamics of flow and heat transfer in a single row narrow impingement channel are experimentally and numerically investigated. Particle image velocimetry (PIV) was used to reveal the detailed information of flow phenomena. PIV measurements were taken at a plane normal to the target wall along the jet centerline. The mean velocity field and the turbulent statistics generated from the mean flow field were analyzed. The experimental data from the PIV reveal that the flow is highly anisotropic in a narrow impingement channel. To support experimental data, wall-modeled large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) simulations (shear stress transport k–ω, ν2−f, and Reynolds stress model (RSM)) were performed in the same channel geometry. Mean velocities calculated from the RANS and LES were compared with the PIV data. Turbulent kinetic energy budgets were calculated from the experiment, and were compared with the LES and RSM model, highlighting the major shortcomings of RANS models to predict correct heat transfer behavior for the impingement problem. Temperature-sensitive paint (TSP) was also used to experimentally obtain a local heat transfer distribution at the target and the side walls. An attempt was made to connect the complex aerodynamic flow behavior with the results obtained from heat transfer, indicating heat transfer is a manifestation of flow phenomena. The accuracy of LES in predicting the mean flow field, turbulent statistics, and heat transfer is shown in the current work as it is validated against the experimental data through PIV and TSP.
Skip Nav Destination
Article navigation
March 2018
Research-Article
Flow and Heat Transfer Analysis in a Single Row Narrow Impingement Channel: Comparison of Particle Image Velocimetry, Large Eddy Simulation, and RANS to Identify RANS Limitations
Jahed Hossain,
Jahed Hossain
Center for Advanced Turbomachinery
and Energy Research,
University of Central Florida,
12781 Ara Drive,
Orlando, FL 32816
e-mail: jahed.hossain@knights.ucf.edu
and Energy Research,
University of Central Florida,
12781 Ara Drive,
Orlando, FL 32816
e-mail: jahed.hossain@knights.ucf.edu
Search for other works by this author on:
Erik Fernandez,
Erik Fernandez
Center for Advanced Turbomachinery
and Energy Research,
University of Central Florida,
Orlando, FL 32816
e-mail: erik.fernandez@ucf.edu
and Energy Research,
University of Central Florida,
12781 Ara Drive
,Orlando, FL 32816
e-mail: erik.fernandez@ucf.edu
Search for other works by this author on:
Christian Garrett,
Christian Garrett
Center for Advanced Turbomachinery
and Energy Research,
University of Central Florida,
Orlando, FL 32816
e-mail: chrisgarrett10@knights.ucf.edu
and Energy Research,
University of Central Florida,
12781 Ara Drive
,Orlando, FL 32816
e-mail: chrisgarrett10@knights.ucf.edu
Search for other works by this author on:
Jayanta Kapat
Jayanta Kapat
Center for Advanced Turbomachinery
and Energy Research,
University of Central Florida,
Orlando, FL 32816
e-mail: jayanta.kapat@ucf.edu
and Energy Research,
University of Central Florida,
12781 Ara Drive
,Orlando, FL 32816
e-mail: jayanta.kapat@ucf.edu
Search for other works by this author on:
Jahed Hossain
Center for Advanced Turbomachinery
and Energy Research,
University of Central Florida,
12781 Ara Drive,
Orlando, FL 32816
e-mail: jahed.hossain@knights.ucf.edu
and Energy Research,
University of Central Florida,
12781 Ara Drive,
Orlando, FL 32816
e-mail: jahed.hossain@knights.ucf.edu
Erik Fernandez
Center for Advanced Turbomachinery
and Energy Research,
University of Central Florida,
Orlando, FL 32816
e-mail: erik.fernandez@ucf.edu
and Energy Research,
University of Central Florida,
12781 Ara Drive
,Orlando, FL 32816
e-mail: erik.fernandez@ucf.edu
Christian Garrett
Center for Advanced Turbomachinery
and Energy Research,
University of Central Florida,
Orlando, FL 32816
e-mail: chrisgarrett10@knights.ucf.edu
and Energy Research,
University of Central Florida,
12781 Ara Drive
,Orlando, FL 32816
e-mail: chrisgarrett10@knights.ucf.edu
Jayanta Kapat
Center for Advanced Turbomachinery
and Energy Research,
University of Central Florida,
Orlando, FL 32816
e-mail: jayanta.kapat@ucf.edu
and Energy Research,
University of Central Florida,
12781 Ara Drive
,Orlando, FL 32816
e-mail: jayanta.kapat@ucf.edu
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received November 15, 2017; final manuscript received December 1, 2017; published online December 28, 2017. Editor: Kenneth Hall.
J. Turbomach. Mar 2018, 140(3): 031010 (11 pages)
Published Online: December 28, 2017
Article history
Received:
November 15, 2017
Revised:
December 1, 2017
Citation
Hossain, J., Fernandez, E., Garrett, C., and Kapat, J. (December 28, 2017). "Flow and Heat Transfer Analysis in a Single Row Narrow Impingement Channel: Comparison of Particle Image Velocimetry, Large Eddy Simulation, and RANS to Identify RANS Limitations." ASME. J. Turbomach. March 2018; 140(3): 031010. https://doi.org/10.1115/1.4038711
Download citation file:
Get Email Alerts
Cited By
Development of Heat Exchanger Modeling Capability for a Finite-Volume Aeroelasticity Solver
J. Turbomach (August 2025)
Swirling Flow Effects on the Aeroacoustic Signature of an Aerospike Nozzle
J. Turbomach (August 2025)
Roughness Effects on Dense-Gas Turbine Flow: Comparison of Experiments and Simulations
J. Turbomach (August 2025)
An Active Turbulence Grid for Turbomachinery Flow Experiments
J. Turbomach (August 2025)
Related Articles
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
J. Turbomach (April,2017)
Erratum: “Film Cooling Extraction Effects on the Aero-Thermal Characteristics of Rib Roughened Cooling Channel Flow” [ASME J. Turbomach., 135(2), p. 021016; DOI: 10.1115/1.4007501 ]
J. Turbomach (August,2018)
The Optimal Distribution of Pin Fins for Blade Tip Cap Underside Cooling
J. Turbomach (January,2015)
Particle Image Velocimetry Measurements in a Two-Pass 90 Degree Ribbed-Wall Parallelogram Channel
J. Turbomach (April,2015)
Related Proceedings Papers
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Turbulent Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential