The application of a new computational capability for accurate and efficient high-fidelity scale-resolving simulations of turbomachinery is presented. The focus is on the prediction of heat transfer and boundary layer characteristics with comparisons to the experiments of Arts et al. (1990, “Aero–Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade,” von Karman Institute for Fluid Dynamics, Rhode St. Genese, Belgium, Technical Note No. 174.) for an uncooled, transonic, linear high-pressure turbine (HPT) inlet guide vane cascade that includes the effects of elevated inflow turbulence. The computational capability is based on an entropy-stable, discontinuous Galerkin (DG) spectral element approach that extends to arbitrarily high orders of spatial and temporal accuracy. The suction side of the vane undergoes natural transition for the clean inflow case, while bypass transition mechanisms are observed in the presence of elevated inflow turbulence. The airfoil suction-side boundary layer turbulence characteristics during the transition process thus differ significantly between the two cases. Traditional simulations based on the Reynolds-averaged Navier–Stokes (RANS) fail to predict these transition characteristics. The heat transfer characteristics for the simulations with clean inflow agree well with the experimental data, while the heat transfer characteristics for the bypass transition cases agree well with the experiment when higher inflow turbulence levels are prescribed. The differences between the clean and inflow turbulence cases are also highlighted through a detailed examination of the characteristics of the transitional and turbulent flow fields.

References

1.
Morkovin
,
M. V.
,
1995
, “
Bypass Transition to Turbulence and Research Desiderata
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-CP-2386
.http://adsabs.harvard.edu/abs/1985trtu.nasa..161M
2.
Saric
,
W. S.
,
Reed
,
H. L.
, and
Kerschen
,
E. J.
,
2002
, “
Boundary–Layer Receptivity to Freestream Disturbances
,”
Annu. Rev. Fluid Mech.
,
34
, pp.
291
319
.
3.
Rist
,
U.
, and
Fasel
,
H.
,
1995
, “
Direct Numerical Simulation of Controlled Transition in a Flat–Plate Boundary Layer
,”
J. Fluid Mech.
,
298
, pp.
211
248
.
4.
Sayadi
,
T.
,
Hamman
,
C. W.
, and
Moin
,
P.
,
2013
, “
Direct Numerical Simulation of Complete H–Type and K–Type Transitions With Implications for the Dynamics of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
724
, pp.
480
509
.
5.
Brandt
,
L.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2004
, “
Transition in Boundary Layers Subject to Free–Stream Turbulence
,”
J. Fluid Mech.
,
517
, pp.
167
198
.
6.
Zaki
,
T. A.
, and
Durbin
,
P. A.
,
2005
, “
Mode Interaction and the Bypass Route to Transition
,”
J. Fluid Mech.
,
531
, pp.
85
111
.
7.
Arts
,
T.
,
de Rouvroit
,
M. L.
, and
Rutherford
,
A.
,
1990
, “Aero–Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade,” von Karman Institute for Fluid Dynamics, Rhode St. Genese, Belgium, Technical Note No.
174
.https://repository.tudelft.nl/view/aereports/uuid:1bdc512b-a625-4607-a339-3cc9b371215e/
8.
Gourdain
,
N.
,
Gicquel
,
L. Y. M.
, and
Morata
,
E. C.
,
2012
, “
Comparison of RANS and LES for Prediction of Wall Heat Transfer in a Highly Loaded Turbine Guide Vane
,”
J. Propul. Power
,
28
(
2
), pp.
423
433
.
9.
Morata
,
E. C.
,
Gourdain
,
N.
,
Duchaine
,
F.
, and
Gicquel
,
L. Y. M.
,
2012
, “
Effects of Free–Stream Turbulence on High Pressure Turbine Blade Heat Transfer Predicted by Structured and Unstructured LES
,”
Int. J. Heat Mass Transfer
,
55
(21–22), pp.
5754
5768
.
10.
Menter
,
F. R.
,
Langtry
,
R.
, and
Volker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow Turbul. Combust.
,
77
(1–4), pp.
277
303
.
11.
Bhaskaran
,
R.
, and
Lele
,
S. K.
,
2010
, “Large Eddy Simulation of High Pressure Turbine Cascade,” Stanford University, Stanford, CA, Technical Report No. TF-119.
12.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
, and
Pichler
,
R.
,
2015
, “Direct Numerical Simulation of a High Pressure Turbine Vane,”
ASME
Paper No. GT2015-43133.
13.
Jee
,
S.
,
Joo
,
J.
, and
Medic
,
G.
,
2016
, “Large–Eddy Simulation of a High–Pressure Turbine Vane With Inlet Turbulence,”
ASME
Paper No. GT2016-56980.
14.
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2016
, “Delayed Detached–Eddy Simulation of a High Pressure Turbine Vane,”
ASME
Paper No. GT2016-56911.
15.
Pichler
,
R.
,
Kopriva
,
J.
,
Laskowski
,
G.
,
Michelassi
,
V.
, and
Sandberg
,
R.
,
2016
, “Highly Resolved LES of a Linear HPT Vane Cascade Using Structures and Unstructured Codes,”
ASME
Paper No. GT2016-57189.
16.
Bassi
,
F.
,
Crivellini
,
A.
,
Rebay
,
S.
, and
Savini
,
M.
,
2005
, “
Discontinuous Galerkin Solution of the Reynolds-Averaged Navier–Stokes and k–ω Turbulence Model Equations
,”
Comput. Fluids
,
34
(4–5), pp.
507
540
.
17.
Corsini
,
A.
,
Rispoli
,
F.
, and
Santoriello
,
A.
,
2005
, “
A Variational Multiscale Higher-Order Finite-Element Formulation for Turbomachinery Flow Computations
,”
Comput. Methods Appl. Mech. Eng.
,
194
(45–47), pp.
4797
4823
.
18.
Cherednichenko
,
S.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2012
, “
On the Application of the Discontinuous Galerkin Method to Turbomachinery Flows
,”
European Congress on Computational Methods in Applied Sciences and Engineering
(
ECCOMAS
), Vienna, Austria, Sept. 10–14, pp. 2359–2375.http://elib.dlr.de/81221/1/eccomas_paper.pdf
19.
Ghidoni
,
A.
,
Colombo
,
A.
, and
Rebay
,
S.
,
2013
, “
Simulation of the Transitional Flow in a Low Pressure Gas Turbine Cascade With a High-Order Discontinuous Galerkin Method
,”
ASME J. Fluids Eng.
,
135
(7), p.
071101
.
20.
Carton de Wiart
,
C.
,
Hillewaert
,
K.
, and
Geuzaine
,
P.
,
2012
, “DNS of a Low Pressure Turbine Blade Computed With a Discontinuous Galerkin Method,”
ASME
Paper No. GT2012-68900.
21.
Hillewaert
,
K.
,
Carton de Wiart
,
C.
,
Verheylewegen
,
G.
, and
Arts
,
T.
,
2014
, “Assessment of a High-Order Discontinuous Galerkin Method for the Direct Numerical Simulation of Transition at Low-Reynolds Number in the T106C High-Lift Low Pressure Turbine Cascade,”
ASME
Paper No. GT2014-26739.
22.
Carton de Wiart
,
C.
,
Hillewaert
,
K.
,
Lorriaux
,
E.
, and
Verheylewegen
,
G.
,
2015
, “Development of a Discontinuous Galerkin Solver for High Quality Wall–Resolved/Modelled DNS and LES of Practical Turbomachinery Flows on Fully Unstructured Meshes,”
ASME
Paper No. GT2015-43428.
23.
Garai
,
A.
,
Diosady
,
L. T.
,
Murman
,
S. M.
, and
Madavan
,
N. K.
,
2015
, “DNS of Flow in a Low–Pressure Turbine Cascade Using a Discontinuous–Galerkin Spectral–Element Method,”
ASME
Paper No. GT2015-42773.
24.
Garai
,
A.
,
Diosady
,
L. T.
,
Murman
,
S. M.
, and
Madavan
,
N. K.
,
2016
, “DNS of Low–Pressure Turbine Cascade Flows With Elevated Inflow Turbulence Using a Discontinuous–Galerkin Spectral Element Method,”
ASME
Paper No. GT2016-56700.
25.
Ismail
,
F.
, and
Roe
,
P. L.
,
2009
, “
Affordable, Entropy–Consistent Euler Flux Functions—II: Entropy Production at Shocks
,”
J. Comput. Phys.
,
228
(15), pp.
5410
5436
.
26.
Bassi
,
F.
, and
Rebay
,
S.
,
2000
, “
GMRES Discontinuous Galerkin Solution of the Compressible Navier–Stokes Equations
,”
Discontinuous Galerkin Methods: Theory, Computation and Applications
,
Springer
, Berlin, pp.
197
208
.
27.
Diosady
,
L. T.
, and
Murman
,
S. M.
,
2013
, “Design of a Variational Multiscale Method for Turbulent Compressible Flows,”
AIAA
Paper No. 2013-2870.
28.
Diosady
,
L. T.
, and
Murman
,
S. M.
,
2014
, “DNS of Flows Over Periodic Hills Using a Discontinuous–Galerkin Spectral–Element Method,”
AIAA
Paper No. 2014-2784.
29.
Diosady
,
L. T.
, and
Murman
,
S. M.
,
2015
, “Higher–Order Methods for Compressible Turbulent Flows Using Entropy Variables,”
AIAA
Paper No. 2015-0294.
30.
Hu
,
F. Q.
,
Li
,
X. D.
, and
Lin
,
D. K.
,
2008
, “
Absorbing Boundary Conditions for Nonlinear Euler and Navier–Stokes Based on the Perfectly Matched Layer Technique
,”
J. Comput. Phys.
,
227
(9), pp.
4398
4424
.
31.
Garai
,
A.
,
Diosady
,
L. T.
,
Murman
,
S. M.
, and
Madavan
,
N. K.
,
2016
, “Development of a Perfectly Matched Layer Technique for a Discontinuous–Galerkin Spectral–Method,”
AIAA
Paper No. 2016-1338.
32.
Rai
,
M. M.
,
2006
, “A Direct Numerical Simulation of Transitional and Turbulent Flow on a Turbine Airfoil,”
AIAA
Paper No. 2006-4460.
33.
Sandberg
,
R. D.
,
Pichler
,
R.
,
Chen
,
L.
,
Johnstone
,
R.
, and
Michelassi
,
V.
, 2014, “Compressible Direct Numerical Simulation of Low–Pressure Turbines—Part I: Methodology,”
ASME
Paper No. GT2014-25685.
34.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2014
, “Compressible Direct Numerical Simulation of Low–Pressure Turbines—Part II: Effect of Inflow Disturbances,”
ASME
Paper No. GT2014-25689.
35.
Lundgren
,
T. S.
,
2003
, “Linearly Forced Isotropic Turbulence,”
Annual Research Briefs
, Center for Turbulence Research, Stanford University, Stanford, CA, pp.
461
473
.https://web.stanford.edu/group/ctr/ResBriefs03/lundgren.pdf
36.
Rosales
,
C.
, and
Meneveau
,
C.
,
2005
, “
Linear Forcing in Numerical Simulations of Isotropic Turbulence: Physical Space Implementation and Convergence Properties
,”
Phys. Fluids
,
17
(9), p.
095106
.
37.
Jespersen
,
D.
,
Pulliam
,
T.
, and
Buning
,
P.
,
1997
, “Recent Enhancements to OVERFLOW,”
AIAA
Paper No. 97-0644.
38.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
39.
Gatski
,
T. B.
,
1997
, “Modelling Compressibility Effects on Turbulence,”
New Tools in Turbulence Modelling
,
Springer–Verlag
, Berlin.
You do not currently have access to this content.