This paper presents the design and experimental results of a new micro gas turbine architecture exploiting counterflow within a single supersonic rotor. This new architecture, called the supersonic rim-rotor gas turbine (SRGT), uses a single rotating assembly incorporating a central hub, a supersonic turbine rotor, a supersonic compressor rotor, and a rim-rotor. This SRGT architecture can potentially increase engine power density while significantly reducing manufacturing costs. The paper presents the preliminary design of a 5 kW SRGT prototype having an external diameter of 72.5 mm and rotational speed of 125,000 rpm. The proposed aerodynamic design comprises a single stage supersonic axial compressor, with a normal shock in the stator, and a supersonic impulse turbine. A pressure ratio of 2.75 with a mass flow rate of 130 g/s is predicted using a 1D aerodynamic model in steady state. The proposed combustion chamber uses an annular reverse-flow configuration, using hydrogen as fuel. The analytical design of the combustion chamber is based on a 0D model with three zones (primary, secondary, and dilution), and computational fluid dynamics (CFD) simulations are used to validate the analytical model. The proposed structural design incorporates a unidirectional carbon-fiber-reinforced polymer rim-rotor, and titanium alloy is used for the other rotating components. An analytical structural model and numerical validation predict structural integrity of the engine at steady-state operation up to 1000 K for the turbine blades. Experimentation has resulted in the overall engine performance evaluation. Experimentation also demonstrated a stable hydrogen flame in the combustion chamber and structural integrity of the engine for at least 30 s of steady-state operation at 1000 K.
Skip Nav Destination
Article navigation
February 2016
Research-Article
Design and Experimental Validation of a Supersonic Concentric Micro Gas Turbine
Gabriel Vézina,
Gabriel Vézina
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Gabriel.Vezina@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Gabriel.Vezina@USherbrooke.ca
Search for other works by this author on:
Hugo Fortier-Topping,
Hugo Fortier-Topping
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Hugo.Fortier-Topping@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Hugo.Fortier-Topping@USherbrooke.ca
Search for other works by this author on:
François Bolduc-Teasdale,
François Bolduc-Teasdale
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Francois.Bolduc-Teasdale@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Francois.Bolduc-Teasdale@USherbrooke.ca
Search for other works by this author on:
David Rancourt,
David Rancourt
Aerospace Systems Design Laboratory,
Georgia Institute of Technology,
275 Ferst Dr.,
Atlanta, GA 30332
e-mail: david.rancourt@gatech.edu
Georgia Institute of Technology,
275 Ferst Dr.,
Atlanta, GA 30332
e-mail: david.rancourt@gatech.edu
Search for other works by this author on:
Mathieu Picard,
Mathieu Picard
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Mathieu.Picard@usherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Mathieu.Picard@usherbrooke.ca
Search for other works by this author on:
Jean-Sébastien Plante,
Jean-Sébastien Plante
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Search for other works by this author on:
Martin Brouillette,
Martin Brouillette
LOCUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Martin.Brouillette@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Martin.Brouillette@USherbrooke.ca
Search for other works by this author on:
Luc Fréchette
Luc Fréchette
MICROS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Luc.Frechette@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Luc.Frechette@USherbrooke.ca
Search for other works by this author on:
Gabriel Vézina
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Gabriel.Vezina@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Gabriel.Vezina@USherbrooke.ca
Hugo Fortier-Topping
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Hugo.Fortier-Topping@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Hugo.Fortier-Topping@USherbrooke.ca
François Bolduc-Teasdale
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Francois.Bolduc-Teasdale@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Francois.Bolduc-Teasdale@USherbrooke.ca
David Rancourt
Aerospace Systems Design Laboratory,
Georgia Institute of Technology,
275 Ferst Dr.,
Atlanta, GA 30332
e-mail: david.rancourt@gatech.edu
Georgia Institute of Technology,
275 Ferst Dr.,
Atlanta, GA 30332
e-mail: david.rancourt@gatech.edu
Mathieu Picard
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Mathieu.Picard@usherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Mathieu.Picard@usherbrooke.ca
Jean-Sébastien Plante
CAMUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Martin Brouillette
LOCUS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Martin.Brouillette@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Martin.Brouillette@USherbrooke.ca
Luc Fréchette
MICROS Laboratory,
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Luc.Frechette@USherbrooke.ca
Université de Sherbrooke,
2500 Boulevard University,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Luc.Frechette@USherbrooke.ca
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received December 19, 2014; final manuscript received October 6, 2015; published online November 17, 2015. Assoc. Editor: Seung Jin Song.
J. Turbomach. Feb 2016, 138(2): 021007 (11 pages)
Published Online: November 17, 2015
Article history
Received:
December 19, 2014
Revised:
October 6, 2015
Citation
Vézina, G., Fortier-Topping, H., Bolduc-Teasdale, F., Rancourt, D., Picard, M., Plante, J., Brouillette, M., and Fréchette, L. (November 17, 2015). "Design and Experimental Validation of a Supersonic Concentric Micro Gas Turbine." ASME. J. Turbomach. February 2016; 138(2): 021007. https://doi.org/10.1115/1.4031863
Download citation file:
Get Email Alerts
Development of Heat Exchanger Modeling Capability for a Finite-Volume Aeroelasticity Solver
J. Turbomach (August 2025)
Swirling Flow Effects on the Aeroacoustic Signature of an Aerospike Nozzle
J. Turbomach (August 2025)
Roughness Effects on Dense-Gas Turbine Flow: Comparison of Experiments and Simulations
J. Turbomach (August 2025)
An Active Turbulence Grid for Turbomachinery Flow Experiments
J. Turbomach (August 2025)
Related Articles
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
J. Turbomach (April,2017)
Adjoint-Based Sensitivity Analysis for Unsteady Bladerow Interaction Using Space–Time Gradient Method
J. Turbomach (November,2017)
Erratum: “Film Cooling Extraction Effects on the Aero-Thermal Characteristics of Rib Roughened Cooling Channel Flow” [ASME J. Turbomach., 135(2), p. 021016; DOI: 10.1115/1.4007501 ]
J. Turbomach (August,2018)
Unsteady Adjoint of Pressure Loss for a Fundamental Transonic Turbine Vane
J. Turbomach (March,2017)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Performance Testing of Combined Cycle Power Plant
Handbook for Cogeneration and Combined Cycle Power Plants, Second Edition