A parallelogram channel has drawn very little or no attention in the open literature although it appears as a cross-sectional configuration of some gas turbine rotor blades. Particle image velocimetry (PIV) is presented of local flow structure in a two-pass 90 deg ribbed-wall parallelogram channel with a 180 deg sharp turn. The channel has a cross-sectional equal length, 45.5 mm, of adjacent sides and two pairs of opposite angles are 45 deg and 135 deg. The rib height to channel height ratio is 0.1. All the measurements were performed at a fixed Reynolds number, characterized by channel hydraulic diameter of 32.17 mm and cross-sectional bulk mean velocity, of 10,000 and a null rotating number. Results are discussed in terms of the distributions of streamwise and secondary-flow mean velocity vector, turbulent intensity, Reynolds stress, and turbulent kinetic energy of the cooling air. It is found that the flow is not periodically fully developed in pitchwise direction through the inline 90 deg ribbed straight inlet and outlet leg. Pitchwise variation of reattachment length is revealed, and comparison with reported values in square channels is made. Whether the 180 deg sharp turn induced separation bubble exists in the ribbed parallelogram channel is also documented. Moreover, the measured secondary flow results inside the turn are successively used to explain previous heat transfer trends.

References

1.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
(
4
), pp.
847
857
.10.1115/1.2928038
2.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trip Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(
1
), pp.
113
123
.10.1115/1.2928265
3.
Dutta
,
S.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
1996
, “
Local Heat Transfer in a Rotating Two-Pass Ribbed Triangular Duct With Two Model Orientations
,”
Int. J. Heat Mass Transfer
,
39
(
4
), pp.
707
715
.10.1016/0017-9310(95)00171-9
4.
Morris
,
W. D.
, and
Rahmat-Abadi
,
K. F.
,
1996
, “
Convective Heat Transfer in Rotating Ribbed Tubes
,”
Int. J. Heat Mass Transfer
,
39
(
11
), pp.
2253
2266
.10.1016/0017-9310(95)00333-9
5.
Murata
,
A.
, and
Mochizuki
,
S.
,
2000
, “
Large Eddy Simulation With a Dynamic Subgrid-Scale Model of Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct With Transverse Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1243
1259
.10.1016/S0017-9310(99)00205-7
6.
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2002
, “
Effect of Rotation on Heat Transfer in Two-Pass Square Channels With Five Different Orientations of 450 Angled Rib Turbulators
,”
Int. J. Heat and Mass Transfer
,
46
(4), pp.
653
669
.10.1016/S0017-9310(02)00325-3
7.
Chang
,
S. W.
, and
Morris
,
W. D.
,
2003
, “
Heat Transfer in a Radially Rotating Square Duct Fitted With In-Line Transverse Ribs
,”
Int. J. Therm. Sci.
,
42
(
3
), pp.
267
282
.10.1016/S1290-0729(02)00026-1
8.
Griffith
,
T. S.
,
AI-Hadhrami
,
L.
,
Han
,
J. C.
, and
Ligrani
,
P.
,
2003
, “
Heat Transfer in Rotating Rectangular Cooling Channels (Ar = 4) With Dimples
,”
ASME J. Turbomach.
,
125
(
3
), pp.
555
563
.10.1115/1.1571850
9.
Mohammad
,
A. Q.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2003
, “
A Numerical Study of Flow and Heat Transfer in Rotating Rectangular Channels (Ar = 4) With 45 Deg Rib Turbulators by Reynolds Stress Turbulence Model
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
19
26
.10.1115/1.1527907
10.
Murata
,
A.
, and
Mochizuki
,
S.
,
2003
, “
Effect of Cross-Sectional Aspect Ratio on Turbulent Heat Transfer in an Orthogonally Rotating Rectangular Duct With Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
46
(
16
), pp.
3119
3133
.10.1016/S0017-9310(03)00080-2
11.
Chang
,
S. W.
,
Liou
,
T. M.
,
Yeh
,
W. H.
, and
Hung
,
J. H.
,
2007
, “
Heat Transfer in a Rotating Square-Sectioned Duct With Two Opposite Walls Roughened by 45 Degree Staggered Ribs at High Rotation Numbers
,”
ASME J. Heat Transfer
,
129
(
2
), pp.
188
199
.10.1115/1.2409988
12.
Kim
,
K. M.
,
Kim
,
Y. Y.
,
Lee
,
D. H.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2007
, “
Influence of Duct Aspect Ratio on Heat/Mass Transfer in Coolant Passages With Rotation
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
357
373
.10.1016/j.ijheatfluidflow.2006.02.032
13.
Liou
,
T. M.
,
Chang
,
S. W.
,
Hung
,
J. H.
, and
Chiou
,
S. F.
,
2007
, “
High Rotation Number Heat Transfer of a 45-Deg Rib-Roughened Rectangular Duct With Two Channel Orientations
,”
Int. J. Heat Mass Transfer
,
50
(19–20), pp.
4063
4078
.10.1016/j.ijheatmasstransfer.2007.01.060
14.
Chang
,
S. W.
,
Liou
,
T. M.
,
Chiou
,
S. F.
, and
Chang
,
S. F.
,
2008
, “
Heat Transfer in High-Speed Rotating Trapezoidal Duct With Rib-Roughened Surfaces and Air Bleeds From the Wall on Apical Side
,”
ASME J. Heat Transfer
,
130
(
6
), p.
061702
.10.1115/1.2891217
15.
Chang
,
S. W.
,
Yang
,
T. L.
,
Liou
,
T. M.
, and
Hong
,
G. F.
,
2009
, “
Heat Transfer of Rotating Rectangular Duct With Compound Scaled Roughness and V-Ribs at High Rotation Numbers
,”
Int. J. Therm. Sci.
,
48
(
1
), pp.
174
187
.10.1016/j.ijthermalsci.2008.03.001
16.
Chang
,
S. W.
,
Yang
,
T. L.
,
Liou
,
T. M.
, and
Hong
,
G. F.
,
2009
, “
Heat Transfer in Rotating Scale-Roughened Trapezoidal Duct at High Rotation Numbers
,”
J. Appl. Therm. Eng.
,
29
(
8–9
), pp.
1682
1693
.10.1016/j.applthermaleng.2008.07.024
17.
Liou
,
T. M.
,
Chang
,
S. W.
,
Chen
,
J. S.
,
Yang
,
T. L.
, and
Lan
,
Y. A.
,
2009
, “
Influence of Channel Aspect Ratio on Heat Transfer in Rotating Rectangular Ducts With Skewed Ribs at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5309
5322
.10.1016/j.ijheatmasstransfer.2009.07.013
18.
Chang
,
S. W.
,
Liou
,
T. M.
, and
Po
,
Y.
,
2010
, “
Coriolis and Rotating Buoyancy Effect on Detailed Heat Transfer Distributions in a Two-Pass Square Channel Roughened by 450 Ribs at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
53
(7–8), pp.
1349
1363
.10.1016/j.ijheatmasstransfer.2009.12.024
19.
Chang
,
S. W.
,
Liou
,
T. M.
,
Yang
,
T. L.
, and
Hong
,
G. F.
,
2010
, “
Heat Transfer in Radially Rotating Pin-Fin Channel at High Rotation Numbers
,”
ASME J. Turbomach.
,
132
(
2
), p.
021019
.10.1115/1.3147103
20.
Chang
,
S. W.
,
Liou
,
T. M.
, and
Chen
,
W. C.
,
2012
, “
Influence of Radial Rotation on Heat Transfer in a Rectangular Channel With Two Opposite Walls Roughened by Hemispherical Protrusions at High Rotation Number
,”
ASME J. Turbomach.
,
134
(
1
), p.
011010
.10.1115/1.4003231
21.
Liou
,
T. M.
,
Chang
,
S. W.
, and
Yang
,
C. C.
,
2012
, “
Heat Transfer in Rotating Twin-Pass Ribbed Channel With Parallelogram Section
,”
2nd Asian-US-European Thermophysics Conference
,
Hong Kong, China
, Jan. 3–6, Paper No. 37.
22.
Liou
,
T. M.
,
Chen
,
M. Y.
, and
Wang
,
Y. M.
,
2002
, “
Visualization of Flow Separation Behind a 180-Deg Sharp Bend Connected by Two Ducts With and Without Rib-Turbulators
,”
10th International Symposium on Flow Visualization
,
Kyoto, Japan
, Aug. 26–29, pp.
2313
2319
.
23.
Liou
,
T. M.
, and
Chen
,
C. C.
,
1997
, “
LDV Study of Developing Flows Through a Smooth Duct With 180-Deg Straight-Corner Turn
,”
ASME J. Turbomach.
,
121
(
1
), pp.
167
174
.10.1115/1.2841228
24.
Liou
,
T.-M.
,
Tzeng
,
Y.-Y.
, and
Chen
,
C.-C.
,
1999
, “
Fluid Flow in a 180 Deg Sharp Turning Duct With Different Divider Thicknesses
,”
ASME J. Turbomach.
,
121
(
3
), pp.
569
576
.10.1115/1.2841354
25.
Liou
,
T. M.
,
Chang
,
S. W.
,
Chan
,
S. P.
,
Liu
,
Y. S.
, and
Chu
,
K. C.
,
2013
, “
Flow Visualization and PIV Measurements in a Two-Pass Smooth-Wall Parallelogram Channel
,”
9th Pacific Symposium on Flow Visualization and Image Processing
,
Busan, Korea
, Aug. 25–28, Paper No. a011.
26.
Matthews
,
P. A.
,
2009
, “
An Experimental Study of Heat Transfer in the Cooling Channels of Gas Turbine Blades
,” Ph.D. thesis, Swansea University, Swansea, UK.
27.
Chang
,
S. W.
,
Liou
,
T. M.
, and
Lee
,
T. H.
,
2012
, “
Heat Transfer and Pressure Drop Measurements of Rotating Rib-Roughened Parallelogram Channel
,”
AIAA J. Thermophys. Heat Transfer
,
26
(
1
), pp.
98
108
.10.2514/1.T3678
28.
Schabacker
,
J.
,
Bölcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180 Bend
,”
International Gas Turbine & Aeroengine Congress & Exhibition.
Stockholm, Sweden
, June 1–4, ASME Paper No. 98-GT-544.
29.
Liou
,
T. M.
, and
Chen
,
C. C.
,
1999
, “
Heat Transfer in a Rotating Two-Pass Smooth Passage With a 180 Deg Rectangular Turn
,”
Int. J. Heat Mass Transfer
,
42
(
2
), pp.
231
247
.10.1016/S0017-9310(98)00148-3
30.
Liou
,
T. M.
,
Chen
,
C. C.
, and
Chen
,
M. Y.
,
2001
, “
TLCT and LDV Measurement of Heat Transfer and Fluid Flow in a Rotating Sharp Turning Duct
,”
Int. J. Heat and Mass Transfer
,
44
(
9
), pp.
1777
1787
.10.1016/S0017-9310(00)00221-0
31.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J. C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90-Deg Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
(24), pp.
4809
4822
.10.1016/S0017-9310(02)00192-8
32.
Elfert
,
M.
,
Voges
,
M.
, and
Klinner
,
J.
,
2008
, “
Detailed Flow Investigation Using PIV in a Rotating Square-Sectioned Two-Pass Cooling System With Ribbed Walls
,”
ASME
Paper No. GT2008-51183. 10.1115/GT2008-51183
33.
Schroll
,
M.
,
Lange
,
L.
, and
Elfert
,
M.
,
2011
, “
Investigation of the Effect of Rotation on the Flow in a Two-Pass Cooling System With Smooth and Ribbed Walls Using PIV
,”
ASME
Paper No. GT2011-46427. 10.1115/GT2011-46427
34.
Coletti
,
F.
,
Cresci
,
I.
, and
Arts
,
T.
,
2012
, “
Time-Resolved PIV Measurements of Turbulent Flow in Rotating Rib-Roughened Channel With Coriolis and Buoyancy Forces
,”
ASME
Paper No. GT2012-69406. 10.1115/GT2012-69406
35.
Wang
,
L.
,
Hejcik
,
J.
, and
Sunden
,
B.
,
2007
, “
PIV Measurement of Separated Flow in a Square Channel With Streamwise Periodic Ribs on One Wall
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
834
841
.10.1115/1.2742723
36.
Casarsa
,
L.
, and
Arts
,
T.
,
2005
, “
Experimental Investigation of the Aerothermal Performance of a High Blockage Rib-Roughened Cooling Channel
,”
ASME J. Turbomach.
,
127
(
3
), pp.
580
588
.10.1115/1.1928933
37.
Labbé
,
O.
,
2013
, “
Large-Eddy-Simulation of Flow and Heat Transfer in a Ribbed Duct
,”
Comput. Fluids
,
76
, pp.
23
32
.10.1016/j.compfluid.2013.01.023
38.
Schabacker
,
J.
,
Boelcs
,
A.
, and
Johnson
,
B. V.
,
1999
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With 90 Deg Rib-Arrangement
,”
3rd European Conference on Turbomachinery-Fluid Dynamics and Thermodynamics
,
London, UK
, Mar. 2–5.
39.
Chen
,
M. Y.
,
2002
, “
Rotating Effects on Heat and Fluid Flows in a Simulated Turbine Blade Internal Cooling Passage With Various Rib Arrangements
,” Ph.D. thesis, National Tsing Hua University, Hsinchu City, Taiwan.
40.
Sewall
,
E. A.
,
Tafti
,
D. K.
,
Graham
,
A. B.
, and
Thole
,
K. A.
,
2006
, “
Experimental Validation of Large Eddy Simulations of Flow and Heat Transfer in a Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
243
258
.10.1016/j.ijheatfluidflow.2005.08.010
41.
Liou
,
T. M.
,
Chang
,
S. W.
,
Huang
,
C. Y.
, and
Lan
,
Y. A.
, 2014, “
Infrared Thermography Study on Heat Transfer of A Rotating Parallelogram Two-Pass Square Channel with Transverse Ribs
,” 16th International Symposium on Flow Visualization, Okinawa, Japan, June 24–28, Paper No. ISFV16-1125.
42.
Latjfeb
,
J.
,
1954
, “
The Structure of Turbulence in Fully Developed Pipe Flow
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Report No. 1174.
You do not currently have access to this content.