This paper describes a wireless data transmission system for a large-scale rotating experiment to investigate the heat transfer in a three-passage serpentine test section. Patterned after the NASA HOST program, the current experiment extends the data set to larger aspect ratios including 1:2, 1:4, and 1:6. As with HOST, heat transfer is measured using the heated segments technique, and the serpentine test section spins at rotation numbers representative of engine conditions. Rotating experiments are essential for capturing the representative operating conditions and complicated flow physics that must be understood to advance internal cooling technology for high aspect ratio configurations. There are challenges associated with controlling the operating parameters and collecting accurate data for high measurement-density rotating experiments. This experiment requires that 140 copper panels be held at a constant temperature by independently controlling and recording the power supplied to a separate heater on each panel. This means there must be 140 temperature measurements, 140 pairs of heater power leads, enough power to drive all of these heaters, and data recording capacity left over to measure fluid temperatures and pressures. Traditional methods of transferring rotating signals to the stationary frame of reference (like slip rings) are widely implemented but have practical limitations in the quantity of transferrable signals and the electrical current capacity of the individual channels. Alternatively, wireless transmission techniques were first developed decades ago, but their practical use has been limited by onboard power delivery requirements and cost. This paper describes the development of a new data transmission and control system that takes advantage of improvements in inexpensive electronics to create a battery-powered and microprocessor controlled system for acquisition, storage, control, and wireless communication. These components are assembled as an integral part of the rotating mechanical hardware. By handling high-fidelity microcircuit signal conditioning, data acquisition, feedback control, and data storage in the rotating frame and transmitting the results wirelessly, this system provides high measurement density and active feedback control that would have been impractical with a conventional slip-ring approach. The design and construction of the wireless control system for one full sidewall of the three-serpentine passage is described in detail. Its capability and functionality is demonstrated with operational data. It will be demonstrated that while all of the components in this system are readily available, the unique combination of this technology opens up a new world of measurement capabilities.

References

1.
Han
,
J.-C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.10.1115/1.4023826
2.
Hajek
,
T. J.
,
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Higgins
,
A. W.
, and
Steuber
,
G. D.
,
1991
, “
Effects of Rotation on Coolant Passage Heat Transfer Volume I—Coolant Passages with Smooth Walls
,” NASA Lewis Research Center, Cleveland, OH, Contractor Report No. 4396.
3.
Johnson
,
B. V.
,
Wagner
,
J. H.
, and
Steuber
,
G. D.
,
1993
, “
Effects of Rotation on Coolant Passage Heat Transfer Volume II—Coolant Passages With Trips Normal and Skewed to the Flow
,” NASA Lewis Research Center, Cleveland, OH, Contractor Report No. 4396.
4.
Coletti
,
F.
, and
Arts
,
T.
, eds.,
2010
, Internal Cooling in Turbomachinery, (VKI Lecture Series 2010-05), von Karman Institute, Rhode-St-Genese, Belgium.
5.
Chanteloup
,
D.
,
Juaneda
,
Y.
, and
Bolcs
,
A.
,
2002
, “
Combined 3-D Flow and Heat Transfer Measurements in a 2-Pass Internal Coolant Passage of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
124
(4), pp.
710
718
.10.1115/1.1506176
6.
Han
,
J.
,
Park
,
J. S.
, and
Ibrahim
,
M. Y.
,
1986
, “
Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters
,” NASA Lewis Research Center, Cleveland, OH, Contractor Report No. 4015.
7.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
700
–706.10.1115/1.3245188
8.
Han
,
J. C.
,
Zang
,
Y. M.
, and
Lee
,
C. P.
,
1994
, “
Influence of Surface Heating Condition on Local Heat Transfer in a Rotating Square Channel With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
116
(1), pp.
149
158
.10.1115/1.2928269
9.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2007
, “
Heat Transfer in a Two-Pass Rectangular Channel (AR 1:4) Under High Rotation Numbers
,”
ASME J. Heat Transfer
130
(8), p. 081701.10.1115/1.2909615
10.
Zhou
,
F.
, and
Acharya
,
S.
,
2008
, “
Heat Transfer at High Rotation Numbers in a Two-Pass 4:1 Aspect Ratio Rectangular Channel With 45 Deg Skewed Ribs
,”
ASME J. Turbomach.
,
130
(
2
), p.
021019
.10.1115/1.2752185
11.
Smith
,
M. A.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2014
, “
Heat Transfer for High Aspect Ratio Rectangular Channels in a Stationary Serpentine Passage With Turbulated and Smooth Surfaces
,”
ASME J. Turbomach.
,
136
(
5
), p.
051002
.10.1115/1.4025307
12.
Rotadata,
2009
, “
Digital Telemetry Presentation
,” Rotadata Ltd., Derby, UK, available at: http://www.rotadata.com/pdf/Telemetry-2009.pdf
13.
Miers
,
S. A.
,
Barna
,
G. L.
,
Anderson
,
C. L.
,
Blough
,
J. R.
,
Inal
,
M. K.
, and
Ciatti
,
S. A.
,
2008
, “
A Wireless Microwave Telemetry Data Transfer Technique for Reciprocating and Rotating Components
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p. 025001.10.1115/1.2771562
14.
Zaman
,
A. J.
,
Bauch
,
M. M.
, and
Raible
,
D.
,
2011
, “
Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry Via Wireless Smart Sensors
,” NASA Glenn Research Center, Cleveland, OH, Report No. NASA/TM-2011-217017.
15.
Adler
,
A. J.
,
1971
, “
Wireless Strain and Temperature Measurement With Radio Telemetry
,”
Exp. Mech.
,
11
(
5
), pp.
378
384
.10.1007/BF02320541
16.
DeAnna
,
R. G.
,
2000
, “
Wireless Telemetry for Gas-Turbine Applications
,” NASA Glenn Research Center, Cleveland, OH, Report No. NASA/TM-2000-209815.
17.
Thompson
,
H. A.
,
2009
, “
Wireless Sensor Research at the Rolls-Royce Control and Systems University Technology Centre
,” 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology (
Wireless VITAE 2009
), Aalborg, Denmark, May 17–20, pp. 571–576.10.1109/WIRELESSVITAE.2009.5172509
18.
Mitchell
,
D.
,
Kulkarni
,
A.
,
Roesch
,
E.
,
Subramanian
,
R.
,
Burns
,
A.
,
Brogan
,
J.
,
Greenlaw
,
R.
,
Lostetter
,
A.
,
Schupbach
,
M.
,
Fraley
,
J.
, and
Waits
,
R.
,
2008
, “
Development and F-Class Industrial Gas Turbine Engine Testing of Smart Components With Direct Write Embedded Sensors and High Temperature Wireless Telemetry
,”
ASME
Paper No. GT2008-51533.10.1115/GT2008-51533
19.
Mitchell
,
D.
,
Kulkarni
,
A.
,
Lostetter
,
A.
,
Schupbach
,
M.
,
Fraley
,
J.
, and
Waits
,
R.
,
2009
, “
Development and Testing of Harsh Environment, Wireless Sensor Systems for Industrial Gas Turbines
,”
ASME
Paper No. GT2009-60316.10.1115/GT2009-60316
20.
Long
,
S. A.
,
Edney
,
S. L.
,
Reiger
,
P. A.
,
Elliott
,
M. W.
,
Knabe
,
F.
, and
Bernhard
,
D.
,
2012
, “
Telemetry System Integrated in a Small Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p. 044501.10.1115/1.4004260
21.
Keyes
,
B.
,
Brogan
,
J.
,
Gouldstone
,
C.
,
Greenlaw
,
R.
,
Yang
,
J.
,
Fraley
,
J.
,
Western
,
B.
, and
Schupbach
,
M.
,
2009
, “
High Temperature Telemetry Systems for In Situ Monitoring of Gas Turbine Engine Components
,”
IEEE Aerospace Conference
, Big Sky, MT, Ma. 7–14.10.1109/AERO.2009.4839523
22.
Hunter
,
G.
,
Beheim
,
G.
,
Ponchak
,
G. E.
,
Scardelletti
,
M. C.
,
Meredith
,
R. D.
,
Dynys
,
F. W.
,
Neudeck
,
P. G.
,
Jordan
,
J. L.
, and
Chen
,
L. Y.
,
2010
, “
Development of High Temperature Wireless Sensor Technology Based on Silicon Carbide Electronics
,”
ECS Trans.
,
33
(
8
), pp.
269
281
.10.1149/1.3484131
23.
Yang
,
J.
,
2013
, “
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
,”
Sensors
,
13
(
2
), pp.
1884
1901
.10.3390/s130201884
24.
Bellis
,
S. J.
,
Delaney
,
K.
,
O'Flynn
,
B.
,
Barton
,
J.
,
Razeeb
,
K. M.
, and
O'Mathuna
,
C.
,
2005
, “
Development of Field Programmable Modular Wireless Sensor Network Nodes for Ambient Systems
,”
Comput. Commun.
,
28
(
13
), pp.
1531
1544
.10.1016/j.comcom.2004.12.045
25.
Jafer
,
E.
, and
Ibala
,
C. S.
,
2013
, “
Design and Development of Multi-Node Based Wireless System for Efficient Measuring of Resistive and Capacitive Sensors
,”
Sens. Actuators, A
,
189
, pp.
276
287
.10.1016/j.sna.2012.09.023
26.
Intel
2006
, “
Intel Mote 2 Engineering Platform Datasheet
,” Intel Corp., Santa Clara, CA.
27.
SOWNet,
2013
, “
G-Node G301 Wireless Sensor Node
,” SOWNet Technologies B.V., Delft, The Netherlands, available at: http://www.sownet.nl/download/G301Web.pd
28.
RF Monolithics,
2009
, “
RFM LPR2430 2.4 GHz Spread Spectrum Transceiver Module
,” RF Monolithics Inc., Dallas, TX.
29.
Atmel
,
2010
, “
ATmega32u4 8-Bit AVR Microcontroller
,” Atmel Corp., San Jose, CA.
30.
Maxim
,
2012
, “
MAX1307 8-Channel, ±Vref Multirange Inputs, Serial 16-Bit ADC Datasheet
,” Maxim Integrated Products Inc., San Jose, CA.
31.
Microchip Technology
,
2007
, “
MCP4921 12-Bit DAC With SPI Interface
,” Microchip Technology Inc., Chandler, AZ.
32.
Microchip Technology
,
2012
, “
RN-131C 802.11 b/g Wireless LAN Module
,” Microchip Technology Inc., Chandler, AZ.
You do not currently have access to this content.