An experimental investigation of the endwall flows in two high-turning turbine cascades was presented by Taremi et al. (2010, “Measurements of Endwall Flows in Transonic Linear Turbine Cascades: Part II—High Flow Turning,” ASME Conf. Proc., GT2010-22760, pp. 1343–1356). Endwall contouring was subsequently implemented in these cascades to control the secondary flows and reduce the total pressure losses. The current paper presents experimental results from these cascades to assess the effectiveness of endwall contouring in the transonic flow regime. The results include blade loadings, total pressure losses, streamwise vorticity and secondary kinetic energy distributions. In addition, surface flow visualization results are presented in order to interpret the endwall limiting streamlines within the blade passages. The flat-endwall and contoured-endwall cascades produce very similar midspan loading distributions and profile losses, but exhibit different secondary flows. The endwall surface flow visualization results indicate weaker interaction between the secondary flows and the blade suction surface boundary layers in the contoured cascades. Overall, the implementation of endwall contouring results in smaller and less intense vortical structures, and the reduction of the associated secondary kinetic energy (SKE) and exit flow angle variations. However, the mass-averaged losses at the main measurement plane, located 40% axial chord lengths downstream of the cascade (1.4CX), do not corroborate the numerically predicted improvements for the contoured cascades. This is in part attributed to slower mixing rates of the secondary flows in the compressible flow regime. The mass-averaged results at 2.0CX, on the other hand, show smaller losses for the contoured configurations associated with smaller SKE dissipation downstream of the cascades. Accordingly, the mixed-out row losses also show improvements for the contoured cascades.

References

1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
),
pp.
621
656
.10.1115/1.2929299
2.
Taremi
,
F.
,
Sjolander
,
S. A.
, and
Praisner
,
T.
,
2010
, “
Measurements of Endwall Flows in Transonic Linear Turbine Cascades: Part II—High Flow Turning
,” Proc. ASME Turbo Expo 2010,
Glasgow, Scotland, UK
, June 14–18,
ASME
Paper No. GT2010-22760. 10.1115/GT2010-22760
3.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,” Proc. ASME Turbo Expo 2007,
Montreal, Canada
, May 14–17,
ASME
Paper No. GT2007-27579. 10.1115/GT2007-27579
4.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Turbomach.
,
107
(
2
),
pp.
249
257
.
5.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
943
,
pp.
11
26
.
6.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
(
1
),
pp.
133
141
.10.1115/1.2835631
7.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2004
, “
The Influence of Leading-Edge Geometry on Secondary Losses in a Turbine Cascade at the Design Incidence
,”
ASME J. Turbomach.
,
126
(
2
),
pp.
277
287
.10.1115/1.1645533
8.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,” Proc. ASME Turbo Expo 2007,
Montreal, Canada
, May 14–17,
ASME
Paper No. GT2007-27537. 10.1115/GT2007-27537
9.
Duden
,
A.
,
Raab
,
I.
, and
Fottner
,
L.
,
1999
, “
Controlling the Secondary Flow in a Turbine Cascade by Three-Dimensional Airfoil Design and Endwall Contouring
,”
ASME J. Turbomach.
,
121
(
2
),
pp.
191
199
.10.1115/1.2841301
10.
Dossena
,
V.
,
Perdichizzi
,
A.
, and
Savini
,
M.
,
1999
, “
The Influence of Endwall Contouring on the Performance of a Turbine Nozzle Guide Vane
,”
ASME J. Turbomach.
,
121
(
2
),
pp.
200
208
.10.1115/1.2841302
11.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D.G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
),
pp.
278
285
.10.1115/1.555445
12.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
),
pp.
286
293
.10.1115/1.555446
13.
Ingram
,
G.
,
Gregory-Smith
,
D.
,
Rose
,
M.
,
Harvey
,
N.
, and
Brennan
,
G.
,
2002
, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,” Proc. ASME Turbo Expo 2002,
Amsterdam, Netherlands
, June 3–6,
ASME
Paper No. GT2002-30339. 10.1115/GT2002-30339
14.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2005
, “
The Benefits of Turbine Endwall Profiling in a Cascade
,”
Proc. Inst. Mech. Eng., Part A: J. Power and Energy
,
219
(
A1
),
pp.
49
59
.10.1243/095765005X6863
15.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2005
, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With End Wall Profiling
,”
ASME J. Turbomach.
,
127
(
1
),
pp.
209
214
.10.1115/1.1812321
16.
Gregory-Smith
,
D.
,
Bagshaw
,
D.
,
Ingram
,
G.
, and
Stokes
,
M.
,
2008
, “
Using Profiled Endwalls, Blade Lean and Leading Edge Extensions to Minimize Secondary Flow
,” Proc. ASME Turbo Expo 2008,
Berlin, Germany
, June 9–13,
ASME
Paper No. GT2008-50811. 10.1115/GT2008-50811
17.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Nonaxisymmetric End Walls. Part II: Experimental Validation
,”
Proc. ASME Turbo Expo 2001
,
New Orleans, LA, June 4–7, ASME Paper No. GT2001-0505
.
18.
Harvey
,
N. W.
,
Brennan
,
G.
,
Newman
,
D. A.
, and
Rose
,
M. G.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,” Proc. ASME Turbo Expo 2002,
Amsterdam, Netherlands
, June 3–6,
ASME
Paper No. GT2002-30337. 10.1115/GT2002-30337
19.
Gustafson
,
R.
,
Mahmood
,
G.
, and
Acharya
,
S.
,
2007
, “
Aerodynamic Measurements in a Linear Turbine Blade Passage With Three-Dimensional Endwall Contouring
,” Proc. ASME Turbo Expo 2007,
Montreal, Canada
, May 14–17,
ASME
Paper No. GT2007-28073.10.1115/GT2007-28073
20.
Torre
,
D.
,
Vázquez
,
R.
, de la Rosa
Blanco
,
E.
, and
Hodson
,
H. P.
,
2011
, “
A New Alternative for Reduction in Secondary Flows in Low Pressure Turbines
,”
ASME J. Turbomach.
,
133
(
1
), p.
011029
.10.1115/1.4001365
21.
Schuepbach
,
P.
,
Rose
,
M.
,
Gier
,
J.
,
Raab
,
I.
,
Germain
,
T.
, and
Abhari
,
R.
,
2009
, “
Non-Axisymmetric End Wall Profiles Including Fillet Radii, in a 1.5 Stage Axial Flow Turbine
,”
Proc. 8th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
,
Graz, Austria, March 23–27
.
22.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schüpbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part I: Endwall Design and Performance
,”
ASME J. Turbomach.
,
132
(
2
), p.
021007
.10.1115/1.3106706
23.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2010
, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
132
(
1
), p.
011013
.10.1115/1.3072520
24.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2009
, “
Measurements of Secondary Losses in a High-Lift Front-Loaded Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,” Proc. ASME Turbo Expo 2009, Orlando, FL, June 8–12,
ASME
Paper No. GT2009-59677
10.1115/GT2009-59677.
25.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomilson
,
N.
, and
Taylor
,
M. D.
,
2003
, “
Improving the Efficiency of the Trent 500-HP Turbine Using Nonaxisymmetric End Walls—Part I: Turbine Design
,”
ASME J. Turbomach.
,
125
(
3
),
pp.
497
504
.10.1115/1.1450766
26.
Praisner
,
T. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery—Part I: A Review and New Model Development
,”
ASME J. Turbomach.
,
129
(
1
),
pp.
1
13
.10.1115/1.2366513
27.
Johansen
,
E. S.
,
Rediniotis
,
O. K.
, and
Jones
,
G.
,
2001
, “
The Compressible Calibration of Miniature Multi-Hole Probes
,”
ASME J. Fluids Eng.
,
123
(
1
),
pp.
128
138
.10.1115/1.1334377
28.
Corriveau
,
D.
, and
Sjolander
,
S. A.
,
2002
, “
Impact of Flow Quality in Transonic Cascade Wind Tunnels—Measurements in an HP Turbine Cascade
,”
Proc. ICAS 2002 Congress
,
Toronto, Canada
, September 8–13, Paper No. ICAS 2002-5.11.4.
29.
Taremi
,
F.
,
Sjolander
,
S. A.
, and
Praisner
,
T.
,
2010
, “
Measurements of Endwall Flows in Transonic Linear Turbine Cascades: Part I—Low Flow Turning
,” Proc. ASME Turbo Expo 2010, Glasgow, Scotland, June 14–18,
ASME
Paper No. GT2010-22759
.10.1115/GT2010-22759
30.
Jeffries
,
M. S.
,
Jouini
,
D. B. M.
, and
Sjolander
,
S. A.
,
1997
, “
Determining the Sampling Rates and Times in a High Speed Wind Tunnel
,”
Proc. CASI 6th Symposium on Aerodynamics
,
Toronto, Canada
, April 28–30.
31.
Brown
,
L. E.
,
1972
, “
Axial Flow Compressor and Turbine Loss Coefficients: A Comparison of Several Parameters
,”
ASME J. Eng. Power
,
94
,
pp.
193
201
.10.1115/1.3445672
32.
Perdichizzi
,
A.
,
1990
, “
Mach Number Effects on Secondary Flow Development Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
),
pp.
643
651
.10.1115/1.2927705
33.
MacIsaac
,
G. D.
,
Taremi
,
F.
,
Knezevici
,
D. C.
,
Scribner
,
C. A.
, and
Sjolander
,
S. A.
,
2009
, “
Challenges in Using Kiel and Seven-Hole Pressure Probes in Highly Three-Dimensional Flows: Application to Turbomachinery Cascade Measurements
,”
XIX International Symposium on Air Breathing Engines (ISABE 2009)
,
Montreal, Canada
, September 7–11, Paper No. ISABE 2009-1209.
34.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
),
pp.
250
258
.10.1115/1.3241818
35.
MacIsaac
,
G. D.
,
Sjolander
,
S. A.
, and
Praisner
,
T.
,
2010
, “
Measurements of Losses and Reynolds Stresses in the Secondary Flow Downstream of a Low-Speed Linear Turbine Cascade
,” Proc. ASME Turbo Expo 2010,
Paper No. GT2010-22727
,
Glasgow, Scotland,
June 14–18,
ASME
Paper No. GT2010-22727.10.1115/GT2010-22727
36.
Snedden
,
G.
,
Dunn
,
D.
,
Von Backström
,
T. W.
, and
Ingram
,
G.
,
2010
, “
Observations on the Selection of Objective Function for the Optimisation of Turbine Endwalls Using Computational Fluid Dynamics
,”
Proc. 7th South African Conference on Computational and Applied Mechanics (SACAM10)
,
Pretoria, South Africa
, January 10–13.
You do not currently have access to this content.