The present contribution is devoted to the experimental study of the conjugate heat transfer in a turbine blade cooling cavity located near the trailing edge. The cooling scheme is characterized by a trapezoidal cross-section, one rib-roughened wall, and slots along two opposite walls. The Reynolds number, defined at the inlet of the test section, is set at 67,500 for all the experiments. The values of all the important nondimensional parameters characterizing the experiment, including the solid-to-fluid conductivity ratio, are engine-representative. Uniform heat flux is imposed along the outer side of the rib-roughened wall. The measurements are performed using three different ribbed walls, with thermal conductivities ranging from 1Wm1K1 to 18Wm1K1. Highly resolved distributions of nondimensional temperature and Nusselt number over the rib-roughened wall are obtained by means of infrared thermography and finite element analysis. The impact of the conduction through the wall on the thermal performance is demonstrated by comparison with purely convective results, previously published by the authors on the same configuration.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Chandra
,
P. R.
,
Han
,
J. C.
, and
Lau
,
S. C.
, 1988, “
Effect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
0889-504X,
110
(
2
), pp.
233
241
.
3.
Han
,
J. C.
, 1988, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Ribs Turbulators
,”
ASME J. Heat Transfer
0022-1481,
110
(
2
), pp.
321
328
.
4.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
, 1992, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
0889-504X,
114
(
4
), pp.
872
880
.
5.
Taslim
,
M. E.
, and
Wadsworth
,
C. M.
, 1997, “
An Experimental Investigation of the Rib Surface-Averaged Heat Transfer Coefficient in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
381
389
.
6.
Haiping
,
C.
,
Jingyu
,
Z.
, and
Taiping
,
H.
, 1998, “
Experimental Investigation on Impingement Heat Transfer From Rib-Roughened Surface Within Arrays of Circular Jet
,” ASME Paper No. 98-GT-208.
7.
Akella
,
K.
, and
Han
,
J. C.
, 1999, “
Impingement Cooling in Rotating Two-Pass Rectangular Channels With Ribbed Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
3
), pp.
364
371
.
8.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
, 2003, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading Edge Wall
,”
ASME J. Turbomach.
0889-504X,
125
(
4
), pp.
682
691
.
9.
Rhee
,
D. H.
,
Nam
,
Y. W.
, and
Cho
,
H. H.
, 2004, “
Local Heat/Mass Transfer With Various Rib Arrangements in Impingement/Effusion Cooling With Crossflow
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
615
626
.
10.
Cunha
,
F. J.
,
Dahmer
,
M. T.
, and
Chyu
,
M. K.
, 2006, “
Analysis of Airfoil Trailing Edge Heat Transfer and Its Significance in Thermal-Mechanical Design and Durability
,”
ASME J. Turbomach.
0889-504X,
128
(
4
), pp.
738
746
.
11.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
D.
, 1998, “
Measurements of Heat Transfer Coefficients in Rib-Roughened Trailing-Edge Cavities With Crossover Jets
,” ASME Paper No. 98-GT-435.
12.
Perelman
,
T. L.
, 1961, “
On Conjugated Problems of Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
3
(
4
), pp.
293
303
.
13.
Luikov
,
A. V.
,
Aleksashenko
,
V. A.
, and
Aleksashenko
,
A. A.
, 1971, “
Analytical Methods of Solution of Conjugated Problems in Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
14
(
8
), pp.
1047
1056
.
14.
Mori
,
S.
,
Sakakibara
,
M.
, and
Tanimoto
,
A.
, 1974, “
Steady Heat Transfer to Laminar Flow in Circular Tube With Conduction in the Tube Wall
,”
Heat Transfer-Jpn. Res.
0096-0802,
3
(
2
), pp.
37
46
.
15.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
3
), pp.
399
415
.
16.
Bohn
,
D.
,
Heuer
,
T.
, and
Kusterer
,
K.
, 2005, “
Conjugate Flow and Heat Transfer Investigation of a Turbo Charger
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
3
), pp.
663
669
.
17.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
, 2005, “
Cooling Performance of the Steam-Cooled Vane in a Steam Turbine Cascade
,” ASME Paper No. GT2005-68148.
18.
Heselhaus
,
A.
, 1998, “
A Hybrid Coupling Scheme and Stability Analysis for Coupled Solid/Fluid Turbine Blade Temperature Calculations
,” ASME Paper No. 98-GT-88.
19.
Amaral
,
S.
,
Verstraete
,
T.
,
Van den Braembussche
,
R. A.
, and
Arts
,
T.
, 2008, “
Design and Optimization of the Internal Cooling Channels of a HP Turbine Blade—Part I, Methodology
,”
ASME J. Turbomach.
0889-504X,
132
(
2
), p.
021013
.
20.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R. A.
, and
Arts
,
T.
, 2008, “
Design and Optimization of the Internal Cooling Channels of a HP Turbine Blade—Part II, Optimization
,”
ASME J. Turbomach.
0889-504X,
132
(
2
), p.
021014
.
21.
Webb
,
B. W.
, and
Ramadhyani
,
S.
, 1985, “
Conjugate Heat Transfer in a Channel With Staggered Ribs
,”
Int. J. Heat Mass Transfer
0017-9310,
28
(
9
), pp.
1679
1687
.
22.
Young
,
T. J.
, and
Vafai
,
K.
, 1998, “
Convective Cooling of a Heated Obstacle in a Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
20
), pp.
3131
3148
.
23.
Iaccarino
,
G.
,
Ooi
,
A.
,
Durbin
,
P. A.
, and
Behnia
,
M.
, 2002, “
Conjugate Heat Transfer Prediction in Two-Dimensional Ribbed Passages
,”
Int. J. Heat Fluid Flow
0142-727X,
23
(
3
), pp.
340
345
.
24.
Fedrizzi
,
R.
, and
Arts
,
T.
, 2004, “
Investigation of the Conjugate Conductive-Convective Thermal Behavior of a Rib-Roughened Internal Cooling Channel
,” ASME Paper No. GT2004-53046.
25.
Agostini
,
F.
, and
Arts
,
T.
, 2005, “
Investigation of the Conjugate Conductive-Convective Thermal Behavior of a Rib-Roughened Internal Cooling Channel
,” ASME Paper No. GT2005-68166.
26.
Martiny
,
M.
, 1998, “
Wärmeübergang in effusionsgekühlten Flammrohrwänden
,” Ph.D. thesis, University of Karlsruhe, Germany.
27.
Armellini
,
A.
,
Coletti
,
F.
,
Arts
,
T.
, and
Scholtes
,
C.
, 2010, “
Aero-Thermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing-Jets—Part I: Flow Field Analysis
,”
ASME J. Turbomach.
0889-504X,
132
(
1
), p.
011009
.
28.
Coletti
,
F.
,
Armellini
,
A.
,
Arts
,
T.
, and
Scholtes
,
C.
, 2011, “
Aero-Thermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing-Jets—Part II: Heat Transfer Analysis
,”
ASME J. Turbomach.
0889-504X,
133
(
3
), p.
031024
.
29.
Coletti
,
F.
,
Facchinetti
,
E.
, and
Arts
,
T.
, 2009, “
Effect of Inclined Ribs on the Aero-Thermal Performance of a Trailing Edge Cooling Cavity With Crossing Jets
,”
Eighth European Turbomachinery Conference
, Graz, Austria.
30.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
, 2005,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
31.
Moffat
,
R. J.
, 1998, “
What’s New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
0142-727X,
19
(
2
), pp.
90
101
.
32.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
33.
Booten
,
C.
, and
Eaton
,
J. K.
, 2005, “
Discrete Green’s Function Measurements in Internal Flows
,”
ASME J. Heat Transfer
0022-1481,
127
(
7
), pp.
692
698
.
34.
von Wolfersdorf
,
J.
, and
Weigand
,
B.
, 2010, “
Turbine Blade Internal Cooling—Selected Experimental Approaches
,”
VKI Lecture Series
,
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genèse, Belgium
.
35.
Hoefler
,
F.
,
Schueren
,
S.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
, 2010, “
Heat Transfer Characteristics of an Oblique Jet Impingement Configuration in a Passage With Ribbed Surfaces
,” ASME Paper No. GT2010-22288.
36.
Schlichting
,
H.
,
Gersten
,
K.
,
Mayes
,
C.
, and
Krause
,
E.
, 2000,
Boundary Layer Theory
,
Springer
,
New York
.
37.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
38.
Kaye
,
G. W. C.
, and
Laby
,
T. H.
, 1995,
Tables of Physical and Chemical Constants
,
Longman Science & Technology
.
39.
Kline
,
S. J.
, and
McClintok
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mechanical Engineering Journal
,
75
(
1
), pp.
3
8
.
40.
Dorfman
,
A.
, 2009,
Conjugate Problems in Convective Heat Transfer
,
Taylor & Francis
,
London
.
41.
Sakakibara
,
M.
, and
Endoh
,
K.
, 1977, “
Effect of Conduction in Wall on Heat Transfer With Turbulent Flow Between Parallel Plates
,”
Int. J. Heat Mass Transfer
0017-9310,
20
(
5
), pp.
507
516
.
42.
Davis
,
E. J.
, and
Gill
,
W. N.
, 1970, “
The Effects of Axial Conduction in the Wall on Heat Transfer With Laminar Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
13
(
3
), pp.
459
470
.
You do not currently have access to this content.