The design of a three-dimensional nonaxisymmetric end wall is carried out using three-dimensional numerical simulations. The computations have been conducted both for the flat and contoured end walls. The performance of the end wall is evaluated by comparing the heat transfer and total pressure loss reduction. The contouring is done in such a way to have convex curvature in the pressure side and concave surface in the suction side. The convex surface increases the velocity by reducing the local static pressure, while the concave surface decreases the velocity by increasing the local pressure. The profiling of the end wall is done by combining two curves, one that varies in the streamwise direction, while the other varies in the pitchwise direction. Several contoured end walls are created by varying the streamwise variation while keeping the pitchwise curve constant. The flow near the contoured end wall is seen to be significantly different from that near the flat end wall. The contoured end wall is found to reduce the secondary flow by decreasing radial pressure gradient. The total pressure loss is also lower and the average heat transfer reduces by about 8% compared to the flat end wall. Local reductions in heat transfer are significant (factor of 3). This study demonstrates the potential of three-dimensional end-wall contouring for reducing the thermal loading on the end wall.

1.
Pierce
,
E. J.
,
Frangistas
,
G. A.
, and
Nelson
,
D. J.
, 1988, “
Geometry-Modification Effects on a Junction-Vortex Flow
,”
Proceedings of the Symposium on Hydrodynamics Performance Enhancement for Marine Applications
, Oct., pp.
37
44
.
2.
Davenport
,
W. J.
,
Agarwal
,
N. K.
,
Dewitz
,
M. B.
,
Simpson
,
R. L.
, and
Poddar
,
K.
, 1990, “
Effects of a Fillet on the Flow Past a Wing-Body Junction
,”
AIAA J.
0001-1452,
28
, pp.
2017
2024
.
3.
Pierce
,
E. J.
, and
Shin
,
J.
, 1992, “
The Development of a Turbulent Junction Vortex System
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
559
565
.
4.
Zess
,
G. A.
, and
Thole
,
K. A.
, 2002, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
167
175
.
5.
Shih
,
T. I.-P.
, and
Lin
,
Y.-L.
, 2003, “
Controlling Secondary-Flow Structure by Leading-Edge Airfoil Fillet and Inlet Swirl to Reduce Aerodynamic Loss and Surface Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
48
56
.
6.
Sauer
,
H.
,
Mueller
,
R.
, and
Vogeler
,
K.
, 2000, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the End-Wall
,” ASME Paper No. 2000-GT-0473.
7.
Harvey
,
W. N.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
, 2000, “
Nonaxisymmetric Turbine End-Wall Design: Part 1—Three-Dimensional Design System
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
278
285
.
8.
Hartland
,
J.
,
Gregory-Smith
,
D. G.
,
Harvey
,
W. N.
, and
Rose
,
M. G.
, 2000, “
Nonaxisymmetric Turbine End-Wall Design: Part 2—Experimental Validation
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
286
293
.
9.
Kopper
,
F. C.
, and
Milano
,
R.
, 1981, “
Experimental Investigation of End-Wall Profiling in a Turbine Vane Cascade
,”
AIAA J.
0001-1452,
19
, pp.
1033
1040
.
10.
Dossena
,
V.
,
Perdichizzi
,
A.
, and
Savini
,
M.
, 1999, “
The Influence of End-Wall Contouring on the Performance of a Turbine Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
200
208
.
11.
Duden
,
A.
,
Raab
,
I.
, and
Fottner
,
L.
, 1999, “
Controlling the Secondary Flow in Turbine Cascade by Three-Dimensional Airfoil Design and End-Wall Contouring
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
191
199
.
12.
Burd
,
S. W.
, and
Simon
,
T. W.
, 2000, “
Flow Measurements in a Nozzle Guide Vane Passage With a Low Aspect Ratio and End-Wall Contouring
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
659
666
.
13.
Shih
,
T. I.-P.
,
Lin
,
Y.-L.
, and
Simon
,
T. W.
, 2000, “
Control of Secondary Flow in Turbine Nozzle Guide Vane by End-Wall Contouring
,” ASME Paper No. 2000-GT-0556.
14.
Lin
,
Y.-L.
,
Shih
,
T. I.-P.
,
Stephens
,
M. A.
, and
Chyu
,
M. K.
, 2001, “
A Numerical Study of Flow and Heat Transfer in a Smooth and a Ribbed U-Duct With and Without Rotation
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
219
232
.
15.
Lin
,
Y.-L.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Bunker
,
R. S.
, 2000, “
Effects of Gap Leakage on Fluid Flow in a Contoured Turbine Nozzle Guide Vane
,” ASME Paper No. 2000-GT-0555.
16.
Yan
,
P. J.
,
Gregory-Smith
,
D. G.
, and
Walker
,
P. J.
, 1999, “
Secondary Flow Reduction in a Nozzle Guide Vane Cascade by Non-Axisymmetric End-Wall Profiling
,” ASME Paper No. 99-GT-339.
17.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New-Eddy Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
0045-7930,
24
(
3
), pp.
227
238
.
18.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S.
,
Prakash
,
C.
, and
Bunker
,
R.
, 2002, “
Flow and Heat Transfer Predictions for a Flat-Tip Turbine Blade
,” ASME Paper No. GT-2002-30190.
19.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S.
,
Prakash
,
C.
, and
Bunker
,
R.
, 2002, “
Flow and Heat Transfer Predictions for a Squealer-Tip Turbine Blade
,” ASME Paper No. 2002-GT-30191.
20.
Jin
,
P.
, and
Goldstein
,
R. J.
, 2003, “
Local Mass/Heat Transfer on a Turbine Blade Near-Tip Surfaces
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
521
528
.
21.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
, 2003, “
Effect of End-Wall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
267
273
.
22.
Saha
,
A. K.
,
Acharya
,
S.
,
Prakash
,
C.
, and
Bunker
,
R.
, 2006, “
Blade Tip Desensitization With Pressure Side Winglet
,”
Int. J. Rotating Mach.
1023-621X, Article ID 17079.
You do not currently have access to this content.