An experimental study was conducted to improve the performance of an aft-loaded ultra-high-lift low-pressure turbine blade known as U2 at low Reynolds numbers. This was achieved by manipulation of the laminar-turbulent transition process on the suction surface. The U2 profile was designed to meet the targets of reduced cost, weight and fuel burn of aircraft engines. The studies were conducted on both low-speed and high-speed experimental facilities under the unsteady flow conditions with upstream passing wakes. The current paper presents the low-speed investigation results. On the smooth suction surface, the incoming wakes are not strong enough to suppress the separation bubble due to the strong adverse pressure gradient on the suction surface and the low wake passing frequency, which allows the separation between the wakes more time to re-establish. Therefore, the profile losses of this ultra-high-lift blade are not as low as conventional or high-lift blades at low Reynolds numbers even in unsteady flows. Two different types of passive separation control devices, i.e., surface trips and air jets, were investigated to further improve the blade performance. The measurement results show that the profile losses can be further reduced to the levels similar to those of the high-lift and conventional blades due to the aft-loaded nature of this ultra-high-lift blade. Detailed surveys of the blade surface boundary layer developments showed that the loss reduction was due to the suppression of the separation underneath the wakes, the effect of the strengthened calmed region and the smaller separation bubble between wakes.

1.
Harvey
,
N. W.
,
Schulte
,
V. S.
,
Howell
,
R. J.
, and
Hodson
,
H. P.
, 1999, “
The Role of Research in the Aerodynamic Design of an Advanced Low pressure Turbine
,” 3rd European Conference on Turbomachinery, I MechE, London, March 1999.
2.
Ashpis
,
D.
, 1997, “
Low Pressure Turbine Flow Physics Program
,” Minnowbrook II, Workshop on Boundary Layer Transition in Turbomachines, Syracuse University.
3.
Vázquez
,
R.
,
Cadrecha
,
D.
, and
Torre
,
D.
, 2003, “
High Stage Loading Low Pressure Turbines. A New Proposal for an Efficiency Chart
,” ASME Pper No. GT2003-38374.
4.
Malzacher
,
F. J.
,
Gier
,
J.
, and
Lippi
,
F.
, 2003, “
Aerodesign and Testing of an Aero-Mechanically Highly Loaded LP Turbine
,” ASME Paper No. GT2003-38338.
5.
Hourmouziadis
,
J.
, 1989, “
Aerodynamic Design of Low Pressure Turbines
,” AGARD Lecture Series, 167.
6.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines. Parts 1–4
,”
ASME J. Turbomach.
0889-504X,
119
.
7.
Schulte
,
V.
, and
Hodson
,
H. P.
, 1994, “
Wake Separation Bubble Interaction in Low Pressure Turbines
,” Paper No. AIAA-94-2931.
8.
Hodson
,
H. P.
, 1998, “
Blade Row Interactions in Low Pressure Turbines
,” VKI Lecture Series 1998–02, Blade Row Interference Effects in Axial Flow Turbomachinery Stages.
9.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
, 1997, “
Development of Blade Profiles for Low-Pressure Turbine Applications
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
531
538
.
10.
Schulte
,
V.
, and
Hodson
,
H. P.
, 1998, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
0889-504X,
120
.
11.
Howell
,
R. J.
,
Hodson
,
H. P.
,
Schulte
,
V.
,
Schiffer
,
H. P.
,
Haselbach
,
F.
, and
Harvey
,
N. W.
, 2001, “
Boundary Layer Development in the BR710 and BR715 LP Turbines-The Implementation of High Lift and Ultra High Lift Concepts
,” ASME Paper No. 2001-GT-0441.
12.
Brunner
,
S.
,
Fottner
,
L.
, and
Schiffer
,
H.-P.
, 2000, “
Comparison of Two Highly Loaded Low Pressure Turbine Cascades under the Influence of Wake-Induced Transition
,” ASME Paper No. 2000̱GT-268.
13.
Haselbach
,
F.
,
Schiffer
,
H. P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N.
, and
Read
,
S.
, 2001, “
The Application of Ultra High Blading in the BR715 LP Turbine
,” ASME Paper No. 2001-GT-0436.
14.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D. E.
, 2003, “
On the Physics of Flow Separation along a Low Pressure Turbine Blade under Unsteady Flow Conditions
,” ASME Paper No. GT2003-38917.
15.
Houtermans
,
R.
,
Coton
,
T.
, and
Arts
,
T.
, 2003, “
Aerodynamic Performance of a Very High Lift LP Turbine Blade with Emphasis on Separation Prediction
,” ASME Paper No. GT2003–38802.
16.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 2001, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
198
206
.
17.
Sondergaard
,
R.
,
Bons
,
J. P.
,
Sucher
,
M.
, and
Rivir
,
R. B.
, 2002, “
Reducing Low-Pressure Turbine Stage Blade Count using Vortex Generator Jet Separation Control
,” ASME Paper No. GT-2002-30602.
18.
Volino
,
R. J.
, 2003, “
Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets
,” ASME Paper No. GT-2003-38729.
19.
McAuliffe
,
B. R.
, and
Sjolander
,
S. A.
, 2004, “
Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
560
569
.
20.
Volino
,
R. J.
, 2003, “
Passive Flow Control on Low-Pressure Turbine Airfoils
,” ASME Paper No. GT-2003-38728.
21.
Lake
,
J. P.
,
King
,
P. I.
, and
Rivir
,
R. B.
, 2000, “
Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves
,” Paper No. AIAA 00-0738.
22.
Sieverding
,
C. H.
,
Bagnera
,
C.
,
Boege
,
A. C.
, Cordero
Anton
,
J. A.
, and
Luere
,
V.
, 2004, “
Investigation of the Effectiveness of Various Types of Boundary Layer Transition Elements of Low Reynolds Number Turbine Bladings
,” ASME Paper No. 2004-GT-54103.
23.
Byerley
,
A. R.
,
Stormer
,
O.
,
Baughn
,
J. W.
,
Simon
,
T. W.
,
Van Treuren
,
K. W.
, and
List
,
J.
, 2002, “
Using Guerney Flaps to Control Laminar Separation on Linear Cascade Blades
,” ASME Paper No. GT-2002-30662.
24.
Ramesh
,
O. N.
,
Hodson
,
H. P.
, and
Harvey
,
N. W.
, 2001, “
Separation Control in Ultra-High Lift Aerofoils by Unsteadiness and Surface Roughness
,” ISABE.
25.
Zhang
,
X. F.
, and
Hodson
,
H. P.
, 2004, “
The Combined Effects of Surface Trips and Unsteady Wakes on Boundary Layer Development of an Ultra-High-Lift LP Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
127
(
3
), pp.
479
488
.
26.
Vera
,
M.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
, 2004, “
The Effects of Roughness and Unsteadiness on a High Speed Highly Loaded Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
127
(
4
), pp.
747
754
.
27.
Bearman
,
P. W.
, 1971, “
Correction for the Effect of Ambient Temperature Drift on Hotwire Measurements in Incompressible Flow
,” DISA Information, No. 11, pp.
25
30
.
28.
Cox
,
R. N.
, “
Wall Neighborhood Measurements in Turbulent Boundary Layers Using Hot-Wire Anemometer
,” A.R.C. Report 19101, Feb. 1957.
29.
Howell
,
R. J.
,
Ramesh
,
O. N.
,
Hodson
,
H. P.
,
Harvey
,
N. W.
, and
Schulte
,
V.
, 2001, “
High Lift and Aft Loaded Profiles for Low Pressure Turbines
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
181
188
.
30.
Gostelow
,
J. P.
, and
Thomas
,
R. L.
, 2003, “
Response of a Laminar Separation Bubble to an Impinging Wake
,” ASME Paper No. GT2003-38972.
31.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2004, “
The Transition Mechanism of Highly-Loaded LP Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
536
543
.
32.
Zhang
,
X. F.
,
Hodson
,
H. P.
, and
Harvey
,
N. W.
, 2005, “
Unsteady Boundary Layer Study on Ultra-High-Lift Low Pressure Turbine Blades
,”
IMechE J. Power Energy, Part A
,
218
(
6
), pp.
451
460
.
33.
Drela
,
M.
, 1995, “
MISES Implementation of Modified Abu-Ghannam∕Shaw Transition Criterion
,” MISES Code Documentation, MIT.
34.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary layer—the Effects of Pressure gradient and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
(
5
), pp.
213
228
.
35.
Mack
,
L. M.
, 1977, “
Transition and Laminar Instability
,” Jet Propulsion Laboratory Publication 77–15, Pasadena, CA.
36.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Hughes
,
J. D.
, 1999, “
Periodic Transition on an Axial Compressor Stator: Incidence and Colocking Effects: Part II—Transition Onset Predictions
,”
ASME J. Turbomach.
0889-504X,
121
(
3
), pp.
408
415
.
37.
Walker
,
G. J.
, 1989, “
Transitional Flow on Axial Turbomachine Blading
,”
AIAA J.
0001-1452,
27
, pp.
595
602
.
38.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2003, “
Unsteady Dissipation Measurements on a Flat Plate Subject to Wake Passing
,” 5th European Turbomachinery Conference.
39.
Vera
,
M.
,
Zhang
,
X. F.
,
Hodson
,
H. P.
, and
Harvey
,
N. W.
, 2005, “
Separation Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation
,” ASME Paper No. GT2005–68893.
You do not currently have access to this content.