A numerical investigation of the unsteady aerodynamics of a fan stage comprised of a transonic rotor, swept fan exit guide vane (FEGV), and low-pressure compressor inlet guide vane (IGV) is described, with emphasis on acoustics. It is shown that the effects of the two downstream stator rows on the time-mean blade flow field are negligible, permitting its investigation using isolated rotor calculations. Simulations of this type are carried out along the engine operating line to quantify the acoustic sources associated with the upstream shock field and wake turbulence-stator interaction. The shock noise achieves its maximum value near the flyover acoustic certification condition, while the wake turbulence is least at this condition owing to its proximity to the design point. The behavior of these noise sources is explained physically by carrying out a detailed examination of the rotor flow field. The unsteady interaction between the rotor and stator rows at a high-power setting is investigated next. It is shown that the time-mean IGV flow is significantly affected by this interaction. Moreover, the unsteady loading on the IGV is found to be large. The behavior of the upstream-propagating acoustic field generated by rotor-IGV interaction is examined. The interaction between the rotor and FEGV is found to be linear in nature. The FEGV surface unsteady pressure and far-field acoustic field behavior are investigated.

1.
Cumpsty
,
N. A.
,
1977
, “
A Critical Review of Turbomachinery Noise
,”
ASME J. Fluids Eng.
,
99
, pp.
278
293
.
2.
Smith, M. J. T., 1989, Aircraft Noise, Cambridge University Press, Cambridge, England.
3.
Morin, B. L., 1999, “Broadband Fan Noise Prediction System for Gas Turbine Engines,” AIAA Paper No. 99-1889.
4.
Verdon, J. M., Montgomery, M. D., and Chuang, H. A., “Development of a Linearized Unsteady Euler Analysis With Application to Wake/Blade-Row Interactions,” NASA CR-1999-208879.
5.
Ni
,
R.-H.
,
1982
, “
A Multiple-Grid Scheme for Solving Euler Equations
,”
AIAA J.
,
20
, pp.
1565
1571
.
6.
Davis, R. L., Ni, R.-H., and Carter, J. E., 1986 “Cascade Viscous Flow Analysis Using the Navier-Stokes Equations,” AIAA Paper No. 86-0033.
7.
Wilcox, D. C., 1998, Turbulence Modeling for CFD, DCW Industries, La Can˜ada, CA.
8.
Giles
,
M. B.
,
1990
, “
Non-Reflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
, pp.
2050
2058
.
9.
Ni, R.-H., and Bogoian, H., 1989 “Predictions of 3-D Multi-Stage Turbine Flow Fields Using a Multiple-Grid Euler Solver,” AIAA Paper No. 89-0233.
10.
Ni, R.-H., and Sharma, O. P., 1990 “Using a 3-D Euler Flow Simulation to Assess Effects of Periodic Unsteady Flows,” AIAA Paper No. 90-2357.
11.
Davis, R. L., Shang, T., Buteau, J., and Ni, R.-H., 1996, “Prediction of 3-D Unsteady Flow in Multi-Stage Turbomachinery Using an Implicit Dual Time-Step Approach,” AIAA Paper No. 96-2565.
12.
Prasad
,
A.
,
2003
, “
Evolution of Upstream Propagating Shock Waves from a Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
133
, pp.
133
140
.
13.
International Civil Aviation Organization, “Environmental Protection, Aircraft Noise,” Annex 16, Vol. 1.
14.
Calvert
,
W. J.
, and
Ginder
,
R. C.
,
1999
, “
Transonic Fan and Compressor Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
C5
), pp.
419
436
.
15.
Kantrowitz, A., 1950, “The Supersonic Axial-flow Compressor,” NACA Report 974.
16.
Ferri, A., 1964, “Aerodynamic Properties of Supersonic Compressors,” High Speed Aerodynamics and Jet Propulsion, Volume X: Aerodynamics of Turbines and Compressors, W. R. Hawthorne (ed.), Princeton University Press, Princeton, NJ.
17.
Morfey
,
C. L.
, and
Fisher
,
M. J.
,
1970
, “
Shock-wave Radiation from a Supersonic Ducted Rotor
,”
J. R. Aeronaut. Soc.
,
74
, pp.
579
585
.
18.
Morfey
,
C. L.
,
1971
, “
Acoustic Energy in Non-uniform Flow
,”
J. Sound Vib.
,
74
, pp.
159
170
.
19.
Prasad, D., and Feng, J., 2003 “Propagation and Decay of Shock Waves in Turbofan Inlets,” ASME J. Turbomach., 127, pp. 117–126.
20.
Pickett
,
G. F.
,
1972
, “
Prediction of the Spectral Content of Combination Tone Noise
,”
J. Aircr.
,
9
, pp.
658
663
.
21.
Hanson, D. B., 1999, “Influence of Lean and Sweep on Noise of Cascades With Turbulent Inflow,” AIAA/CEAS Paper No. 99-1863.
22.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
, pp.
499
509
.
23.
Goldstein, M. E., 1976 Aeroacoustics, McGraw-Hill, New York.
24.
Cumpsty
,
N. A.
,
1972
, “
Tone Noise from Rotor/Stator Interactions in High Speed Fans
,”
J. Sound Vib.
,
24
, pp.
393
409
.
25.
Namba
,
M.
,
1977
, “
Three-dimensional Analysis of Blade Force and Sound Generation for an Annular Cascade in Distorted Flows
,”
J. Sound Vib.
,
50
, pp.
479
508
.
26.
Schulten
,
J. B. H. M.
,
1982
, “
Sound Generated by Rotor Wakes Interacting with a Leaned Vane Stator
,”
AIAA J.
,
20
, pp.
1352
1358
.
27.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
Trans. ASAE
, pp.
309
332
.
28.
Topol, D.A., 1998, “TFaNS Tone Fan Noise Design/Prediction System, Vol. 1: System Description, CUP3D Technical Documentation and Manual for Code Developers,” NASA CR-1999-208882.
29.
Meyer, H. D., and Envia, E., 1996 “Aeroacoustic Analysis of Turbofan Noise Generation,” NASA CR-4715.
30.
Kerrebrock
,
J. L.
,
1977
, “
Small Disturbances in Turbomachine Annuli with Swirl
,”
AIAA J.
,
15
, pp.
794
803
.
You do not currently have access to this content.