Detailed heat transfer coefficient distributions on a gas turbine squealer tip blade were measured using a hue detection based transient liquid-crystals technique. The heat transfer coefficients on the shroud and near tip regions of the pressure and suction sides of a blade were also measured. Squealer rims were located along (a) the camber line, (b) the pressure side, (c) the suction side, (d) the pressure and suction sides, (e) the camber line and the pressure side, and (f) the camber line and the suction side, respectively. Tests were performed on a five-bladed linear cascade with a blow down facility. The Reynolds number based on the cascade exit velocity and the axial chord length of a blade was 1.1×106 and the overall pressure ratio was 1.2. Heat transfer measurements were taken at the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span. Results show that the heat transfer coefficients on the blade tip and the shroud were significantly reduced by using a squealer tip blade. Results also showed that a different squealer geometry arrangement changed the leakage flow path and resulted in different heat transfer coefficient distributions. The suction side squealer tip provided the lowest heat transfer coefficient on the blade tip and near tip regions compared to the other squealer geometry arrangements.

1.
Azad
,
GM S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
, pp.
717
724
.
2.
Azad
,
GM S.
,
Han
,
J. C.
, and
Boyle
,
R.
,
2000
, “
Heat Transfer and Pressure Distributions on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
, pp.
725
732
.
3.
Azad
,
GM S.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
,
124
, pp.
452
459
.
4.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficient on a Gas Turbine Blade Tip and Near Tip Regions
,”
J. Thermophys. Heat Transfer
,
17
, pp.
297
303
.
5.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficient on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
125
, pp.
669
677
.
6.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
,
125
, pp.
494
502
.
7.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
Heat Transfer Coefficient and Film-Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
125
, pp.
648
657
.
8.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
, pp.
692
697
.
9.
Yang, T. T., and Diller, T. E., 1995, “Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade,” ASME-95-WA/HT-29.
10.
Papa, M., Goldstein, R. J., and Gori, F., 2002, “Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade,” ASME Paper GT-2002-30192.
11.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Heat Transfer
,
111
, pp.
73
79
.
12.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
,
1989
, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Turbomach.
,
111
, pp.
131
138
.
13.
Heyes, F. J. G., Hodson, H. P., and Dailey, G. M., 1991, “The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades,” ASME 91-GT-135.
14.
Kim
,
Y. W.
, and
Metzger
,
D. E.
,
1995
, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Model
,”
ASME J. Turbomach.
,
117
, pp.
12
21
.
15.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Heat Transfer
,
111
, pp.
73
79
.
16.
Mayle, R. E., and Metzger D. E., 1982, “Heat Transfer at the Tip of an Unshrouded Turbine Blade,” Proc. Seventh Int. Heat Transfer Conf., Hemisphere Publishing, pp. 87–92.
17.
Metzger
,
D. E.
, and
Rued
,
K.
,
1989
, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips. Part I: Sink Flow Effects on Blade Pressure Side
,”
ASME J. Turbomach.
,
111
, pp.
284
292
.
18.
Rued
,
K.
, and
Metzger
,
D. E.
,
1989
, “
The Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips. Part II: Source Flow Effects on Blade Pressure Side
,”
ASME J. Turbomach.
,
111
, pp.
293
300
.
19.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
, pp.
502
507
.
20.
Bunker
,
R. S.
,
Baily
,
J. C.
, and
Ameri
,
A. A.
,
2000
, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 1: Experimental Results
,”
ASME J. Turbomach.
,
122
, pp.
272
277
.
21.
Bunker, R. S., and Baily, J. C., 2001, “Effect of Squealer Cavity Depth and Oxidation on Turbine Blade Tip Heat Transfer,” ASME Paper No. 2001-GT-0155.
22.
Teng
,
S.
,
Han
,
J. C.
, and
Azad
,
GM S.
,
2001
, “
Derailed Heat Transfer Coefficient Distributions on a Large-Scale Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
,
123
, pp.
803
809
.
23.
Rhee, D. H., Choi, J. H., and Cho, H. H., 2001, “Effect of Blade Tip Clearance on Turbine Shroud Heat/Mass Transfer,” ASME Paper 2001-GT-0158.
24.
Jin, P., and Goldstein, R. J., 2002, “Local Mass/Heat Transfer on a Turbine Blade Tip,” 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, February.
25.
Jin, P., and Goldstein, R. J., 2002, “Local Mass/Heat Transfer on Turbine Blade Near-Tip Surfaces,” ASME Paper GT-2002-30556.
26.
Ameri, A. A., and Steinthorsson, E., 1995, “Prediction of Unshrouded Rotor Blade Tip Heat Transfer,” ASME 95-GT-142.
27.
Ameri, A. A., and Steinthorsson, E., 1996, “Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer,” ASME 96-GT-189.
28.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
L. David
,
1999
, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
,
121
, pp.
683
693
.
29.
Ameri
,
A. A.
, and
Bunker
,
R. S.
,
2000
, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 2: Simulation Results
,”
ASME J. Turbomach.
,
122
, pp.
272
277
.
30.
Ameri, A. A., and Rigby, D. L., 1999, “A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models,” NASA/CR 1999-209165.
31.
Ameri
,
A. A.
,
2001
, “
Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped With a Mean-Camberline Strip
,”
ASME J. Turbomach.
,
123
, pp.
704
708
.
32.
Ameri, A. A., Steinthorsson, E., and Rigby, L. David, 1997, “Effect of Squealer Tip on Rotor Heat Transfer and Efficiency,” ASME 97-GT-128.
33.
Yang, H., Acharya, S., Ekkad, S. V., Prakash, C., and Bunker, R., 2002, “Flow and Heat Transfer Predictions for a Flat-Tip Turbine Blade,” ASME Paper GT-2002-30190.
34.
Yang, H., Acharya, S., Ekkad, S. V., Prakash, C., and Bunker, R., 2002, “Numerical Simulation of Flow and Heat Transfer Past a Turbine Blade with a Squealer-Tip,” ASME Paper GT-2002-30193.
35.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
You do not currently have access to this content.