Abstract

With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flowfield measurements were performed in a large-scale, linear, vane cascade. The flowfield measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flow-field results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.

1.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
, pp.
866
874
.
2.
Kang
,
M.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer And Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
, pp.
558
568
.
3.
Kang
,
M.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
,
122
, pp.
458
466
.
4.
Kubendran, L. R., Bar-Sever, A., and Harvey, W. D., 1988, “Flow Control in a Wing/Fuselage Type Juncture,” AIAA Pap., AIAA-88-0614.
5.
Eckerle
,
W. A.
, and
Langston
,
L. S.
,
1987
, “
Horseshoe Vortex Formation Around a Cylinder
,”
ASME J. Turbomach.
,
109
, pp.
278
285
.
6.
Pierce
,
F. J.
, and
Shin
,
J.
,
1992
, “
The Development of a Turbulent Junction Vortex System
,”
ASME J. Fluids Eng.
,
114
, pp.
559
565
.
7.
Praisner
,
T. J.
,
Seal
,
C. V.
,
Takmaz
,
L.
, and
Smith
,
C. R.
,
1997
, “
Spatial-Temporal Turbulent Flow-Field and Heat Transfer Behavior in End-Wall Junctions
,”
Int. J. Heat Fluid Flow
,
18
, pp.
142
151
.
8.
Kubendran, L. R., and Harvey, W. D., 1985, “Juncture Flow Control Using Leading-Edge Fillets,” AIAA Pap., AIAA-85-4097.
9.
Sung, C.-H., and Lin, C.-W., 1988, “Numerical Investigation on the Effect of Fairing on the Vortex Flows Around Airfoil/Flat—Plate Junctures,” AIAA Pap., AIAA-88-0615.
10.
Sung, C.-H., Yang, C.-I., and Kubendran, L. R., 1988, “Control of Horseshoe Vortex Juncture Flow Using a Fillet,” Symp on Hydrodynamic Performance Enhancement for Marine Applications, Newport, RI.
11.
Devenport, W. J., Simpson, R. L., Dewitz, M. B., and Agarwal, N. K., 1991, “Effects of a Strake on the Flow Past a Wing—Body Junction,” AIAA Pap., AAPRAQAIAA-91-0252.
12.
Bernstein
,
L.
, and
Hamid
,
S.
,
1995
, “
On the Effect of a Strake-Like Junction Fillet on the Lift and Drag of a Wing
,”
Aeronaut. J.
, Feb.,
pp.
39
52
.
13.
Sauer, H., Mueller, R., and Vogeler, K., 2000, “Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall,” ASME Paper, 2000-GT-0473.
14.
Devenport
,
W. J.
,
Agarwal
,
N. K.
,
Dewitz
,
M. B.
,
Simpson
,
R. L.
, and
Poddar
,
K.
,
1990
, “
Effects of a Fillet on the Flow Past a Wing—Body Junction
,”
AIAA J.
,
28
, pp.
2017
2024
.
15.
Fluent User’s Guide, 1998, Version 5, Fluent Inc., NH.
16.
Hermanson
,
K.
, and
Thole
,
K. A.
,
2000
, “
Effect of Inlet Profiles on Endwall Secondary Flows
,”
J. Propul. Power
,
16
,
286
296
.
17.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2000
, “
Highly Turbulent Flowfield Measurements Around a Stator Vane
,”
ASME J. Turbomach.
,
122
, pp.
255
262
.
18.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2002
, “
High Freestream Turbulence Effects in the Endwall Leading Edge Region,” (ASME Paper 2000-6T-202
),
ASME J. Turbomach.
,
124
, pp.
107
118
.
19.
White, F. M., 1974, Viscous Fluid Flow, McGraw-Hill, New York.
20.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
21.
Zess, G. A., and Thole, K. A., 1999, “Methods to Reduce the Leading Edge Horseshoe Vortex in a Gas Turbine Stator Vane,” Report 99-3, University of Wisconsin.
22.
Gregory-Smith
,
D. G.
,
Walsh
,
J. A.
,
Graves
,
C. P.
, and
Fulton
,
K. P.
,
1988
, “
Turbulence Measurements and Secondary Flows in a Turbine Rotor Cascade
,”
ASME J. Turbomach.
,
110
, pp.
479
485
.
You do not currently have access to this content.