A novel technique for computing unsteady flows about turbomachinery cascades is presented. Starting with a frequency domain CFD description of unsteady aerodynamic flows, we form a large, sparse, generalized, non-Hermitian eigenvalue problem that describes the natural modes and frequencies of fluid motion about the cascade. We compute the dominant left and right eigenmodes and corresponding eigenfrequencies using a Lanczos algorithm. Then, using just a few of the resulting eigenmodes, we construct a reduced order model of the unsteady flow field. With this model, one can rapidly and accurately predict the unsteady aerodynamic loads acting on the cascade over a wide range of reduced frequencies and arbitrary modes of vibration. Moreover, the eigenmode information provides insights into the physics of unsteady flows. Finally we note that the form of the reduced order model is well suited for use in active control of aeroelastic and aeroacoustic phenomena.

1.
Bakhle
M. A.
,
Mahajan
A. J.
,
Keith
T. G.
, and
Stefko
G. L.
,
1991
, “
Cascade Flutter Analysis With Transient Response Aerodynamics
,”
Computers and Structures
, Vol.
41
, pp.
1073
1085
.
2.
Bateman
H.
,
1930
, “
Irrotational Motion of a Compressible Fluid
,”
Proc. National Academy of Sciences
, Vol.
16
, pp.
816
825
.
3.
Bisplinghoff, R. L., and Ashley, H., 1962, Principles of Aeroelasticity, Wiley, New York, p. 350.
4.
Bo¨lcs, A., and Fransson, T. H., 1986, “Aeroelasticity in Turbomachines Comparison of Theoretical and Experimental Results,” AFOSR-TR-87-0605, Air Force Office of Scientific Research, Washington, DC.
5.
Cornwell
R. E.
,
Craig
R. R.
, and
Johnson
C. P.
,
1983
, “
On the Application of the Mode-Acceleration Method to Structural Engineering Problems
,”
Earthquake Engineering and Structural Dynamics
, Vol.
11
, pp.
679
688
.
6.
Cullum, J., and Willoughby, R., 1985, “Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1, Theory,” in: Progress in Scientific Computing, Vol. 3, S. Abarbanel et al., eds., Birkha¨user, Boston, pp. 76–163.
7.
Cullum
J.
, and
Kerner
W.
, and
Willoughby
R.
,
1989
, “
A Generalized Nonsymmetric Lanczos Procedure
,”
Computer Physics Communications
, Vol.
53
, pp.
19
48
.
8.
Engquist
B.
, and
Majda
A.
,
1977
, “
Absorbing Boundary Conditions for the Numerical Simulation of Waves
,”
Mathematics of Computation
, Vol.
31
, pp.
629
651
.
9.
Fransson, T. H., 1991, private communication.
10.
Gerolymos
G. A.
,
1993
, “
Advances in the Numerical Integration of the Three-Dimensional Euler Equations in Vibrating Cascades
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
, pp.
781
790
.
11.
Giles
M. B.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
Journal of Propulsion and Power
, Vol.
4
, pp.
356
362
.
12.
Hall
K. C.
, and
Crawley
E. F.
,
1989
, “
Calculation of Unsteady Flows in Turbomachinery Using the Linearized Euler Equations
,”
AIAA Journal
, Vol.
27
, pp.
777
787
.
13.
Hall
K. C.
,
1993
, “
Deforming Grid Variational Principle for Unsteady Small Disturbance Flows in Cascades
,”
AIAA Journal
, Vol.
31
, pp.
891
900
.
14.
Hall
K. C.
, and
Clark
W. S.
,
1993
, “
Linearized Euler Predictions of Unsteady Aerodynamic Loads in Cascades
,”
AIAA Journal
, Vol.
31
, pp.
540
550
.
15.
Hall
K. C.
, and
Lorence
C. B.
,
1993
, “
Calculation of Three-Dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
115
, pp.
800
809
.
16.
Hall, K. C., Lorence, C. B., and Clark, W. S., 1993, “Nonreflecting Boundary Conditions for Linearized Unsteady Aerodynamic Calculations,” AIAA Paper No. 93-0882.
17.
Hall
K. C.
,
1994
, “
Eigenanalysis of Unsteady Flows About Airfoils, Cascades, and Wings
,”
AIAA Journal
, Vol.
32
, pp.
2426
2432
.
18.
He
L.
,
1990
, “
An Euler Solution or Unsteady Flows Around Oscillating Blades
,”
ASME JOURNAL OF TURBOMACHINERY
, Vol.
112
, pp.
714
722
.
19.
He
L.
,
1993
, “
New Two-Grid Acceleration Method for Unsteady Navier–Stokes Calculations
,”
Journal of Propulsion and Power
, Vol.
9
, pp.
272
280
.
20.
Higdon
R. L.
,
1986
, “
Absorbing Boundary Conditions for Difference Approximations to the Multi-dimensional Wave Equation
,”
Mathematics of Computation
, Vol.
47
, pp.
437
459
.
21.
Hodson
H. P.
,
1985
, “
An Inviscid Blade-to-Blade Prediction of a Wake-Generated Unsteady Flow
,”
ASME Journal of Engineering for Gas Turbines and Power
, Vol.
107
, pp.
337
344
.
22.
Holmes, D. G., and Chuang, H. A., 1993, “2D Linearized Harmonic Euler Flow Analysis for Flutter and Forced Response,” in: Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, H. M., Atassi, ed., Springer-Verlag, New York, pp. 213–230.
23.
Huff, D. L., Swafford, T. W., and Reddy, T. S. R., 1991, “Euler Flow Predictions for an Oscillating Cascade Using a High Resolution Wave-Split Scheme,” ASME Paper No. 91-GT-198.
24.
Jennings, A., 1978, Matrix Computation for Engineers and Scientists, Wiley, New York, pp. 289–320.
25.
Lindquist
D. R.
, and
Giles
M. B.
,
1994
, “
On the Validity of Linearized Euler Equations With Shock Capturing
,”
AIAA Journal
, Vol.
32
, pp.
46
53
.
26.
Mahajan
A. J.
,
Dowell
E. H.
, and
Bliss
D. B.
,
1991
a, “
Eigenvalue Calculation Procedure for Euler/Navier–Stokes Solvers With Application to Flows Over Airfoils
,”
Journal of Computational Physics
, Vol.
97
, pp.
398
413
.
27.
Mahajan
A. J.
,
Dowell
E. H.
, and
Bliss
D. B.
,
1991
b, “
Role of Artificial Viscosity in Euler and Navier–Stokes Solvers
,”
AIAA Journal
, Vol.
29
, pp.
555
559
.
28.
Mahajan, A. J., Bakhle, M. A., and Dowell, E. H., 1993, “An Efficient Procedure for Cascade Aeroelastic Stability Determination Using Nonlinear, Time-Marching Aerodynamic Solvers,” AIAA Paper No. 93-1631.
29.
Nixon, D., 1989, “Alternative Methods for Modeling Unsteady Transonic Flows,” in: Unsteady Transonic Aerodynamics, D. Nixon, ed., Progress in Astronautics and Aeronautics, Vol. 120, American Institute of Aeronautics and Astronautics, Washington, DC, pp. 349–376.
30.
Parker
R.
,
1967
, “
Resonance Effects in Wake Shedding From Parallel Plates: Calculation of Resonant Frequencies
,”
Journal of Sound and Vibration
, Vol.
5
, pp.
330
343
.
31.
Rai
M. M.
,
1989
a, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction: Part I—Methodology
,”
Journal of Propulsion and Power
, Vol.
5
, pp.
305
311
.
32.
Rai
M. M.
,
1989
b, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction: Part II—Results
,”
Journal of Propulsion and Power
, Vol.
5
, pp.
312
319
.
33.
Rajakumar
C.
,
1993
, “
Lanczos Algorithm for the Quadratic Eigenvalue Problem in Engineering Applications
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
105
, pp.
1
22
.
34.
Saad, Y., 1992, Numerical Methods for Large Eigenvalue Problems, Wiley, New York, pp. 156–162, 186–194.
35.
Stewart
G. J.
,
1976
, “
Simultaneous Iteration for Computing Invariant Subspaces of Non-Hermitian Matrices
,”
Numerische Mathematik
, Vol.
25
, pp.
123
136
.
36.
Stewart
W. J.
, and
Jennings
A.
,
1981
, “
Simultaneous Iteration Algorithm for Real Matrices
,”
ACM Transaction on Mathematical Software
, Vol.
7
, pp.
184
198
.
37.
Verdon, J. M., 1987, “Linearized Unsteady Aerodynamic Theory,” AGARD Manual on Aeroelasticity in Axial Flow Turbomachines, Vol. I, Unsteady Turbomachinery Aerodynamics (AGARD-AG-298), M. F. Platzer and F. O. Carta, eds., Neuilly sur Seine, France, Chap. 2.
38.
Verdon
J. M.
,
1989
, “
The Unsteady Flow in the Far Field of an Isolated Blade Row
,”
Journal of Fluids and Structures
, Vol.
3
, pp.
123
149
.
39.
Whitehead, D. S., and Grant, R. J., 1981, “Force and Moment Coefficients of High Deflection Cascades,” Proceedings of the 2nd International Symposium on Aeroelasticity in Turbomachines, P. Suter, ed., Juris-Verlag, Zurich, pp. 85–127.
40.
Whitfield, D. L., Swafford, T. W., and Mulac, R. A., 1987, “Three-Dimensional Unsteady Euler Solutions for Propfans and Counter-rotating Propfans in Transonic Flow,” AIAA Paper No. 87-1197.
41.
Wilkinson, J. H., 1965, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, pp. 377–404.
42.
Zheng
T. S.
,
Liu
W. M.
, and
Cai
Z. B.
,
1989
, “
A Generalized Inverse Iteration Method for the Solution of Quadratic Eigenvalue Problems in Structural Dynamic Analysis
,”
Computers and Structures
, Vol.
33
, pp.
1139
1141
.
This content is only available via PDF.
You do not currently have access to this content.