Abstract

Planetary gear journal bearings (PGJBs) are a promising alternative to rolling bearings for large-scale wind turbine gearboxes due to their high power density and low failure rates. However, the lubrication regime of PGJBs converts frequently between the hydrodynamic and mixed lubrication regimes with the fluctuation in wind speed, which brings challenges to the long life of gearboxes. Decreasing the critical speed of the lubrication regime transition can help PGJBs expand the wind speed range operating under the hydrodynamic lubrication and reduce bearing friction and wear, thereby extending their service life. To accurately evaluate the bearing performance under mixed and hydrodynamic lubrication regimes, a mixed-TEHD model considering the influences of the elastic–plastic asperity contact, axial misalignment, bearing deformation, and thermal effects is developed in this article. A full-size test rig for PGJBs is built to simulate the transition process of the lubrication regimes by conducting a variable rotational speed experiment. The measured friction torque curve agrees well with the predicted one, which verifies the accuracy of the presented model. Furthermore, the effects of bearing clearance ratio, aspect ratio, composite roughness, and helix angle on the lubrication regime transition characteristics of PGJBs are explored. The results indicate that the PGJB with a smaller clearance ratio, a larger aspect ratio, and a smaller composite roughness can reduce the critical speed of the lubrication regime transition. This research can provide some references for further investigation of the surface optimization and structure design of PGJBs.

References

1.
Chen
,
Q.
,
Zhang
,
K.
,
Zhang
,
Y.
,
Ding
,
Q.
,
Zhu
,
Y.
, and
Feng
,
K.
,
2025
, “
Full-Size Experimental Investigations on Planetary Gear Journal Bearings in High-Power Wind Turbines
,”
ASME J. Tribol.
,
147
(
3
), p.
034102
.
2.
Bruce
,
T.
,
Long
,
H.
, and
Dwyer-Joyce
,
R. S.
,
2015
, “
Dynamic Modelling of Wind Turbine Gearbox Bearing Loading During Transient Events
,”
IET Renew. Power Gener.
,
9
(
7
), pp.
821
830
.
3.
Ding
,
H.
,
Mermertas
,
Ü
,
Hagemann
,
T.
, and
Schwarze
,
H.
,
2024
, “
Calculation and Validation of Planet Gear Sliding Bearings for a Three-Stage Wind Turbine Gearbox
,”
Lubricants
,
12
(
3
), p.
95
.
4.
Lucassen
,
M.
,
Decker
,
T.
,
Guzmán
,
F. G.
,
Lehmann
,
B.
,
Bosse
,
D.
, and
Jacobs
,
G.
,
2023
, “
Simulation Methodology for the Identification of Critical Operating Conditions of Planetary Journal Bearings in Wind Turbines
,”
Forsch Ingenieurwes.
,
87
(
1
), pp.
147
157
.
5.
Wang
,
L.
,
Cai
,
J.
,
Ding
,
X.
,
Wang
,
Z.
, and
Wang
,
X.
,
2024
, “
Multidisciplinary Design and Optimization of Journal Bearing for High-Power Wind Turbine Speed Increaser
,”
Tribol. Int.
,
197
, p.
109765
.
6.
Lehmann
,
B.
,
Trompetter
,
P.
,
Guzmán
,
F. G.
, and
Jacobs
,
G.
,
2023
, “
Evaluation of Wear Models for the Wear Calculation of Journal Bearings for Planetary Gears in Wind Turbines
,”
Lubricants
,
11
(
9
), p.
364
.
7.
Xie
,
Z.
,
Rao
,
Z. S.
,
Ta
,
N.
, and
Liu
,
L.
,
2016
, “
Investigations on Transitions of Lubrication States for Water Lubricated Bearing. Part I: Determination of Friction Coefficients and Film Thickness Ratios
,”
Ind. Lubr. Tribol.
,
68
(
3
), pp.
404
415
.
8.
Xie
,
Z.
,
Rao
,
Z. S.
,
Ta
,
N.
, and
Liu
,
L.
,
2016
, “
Investigations on Transitions of Lubrication States for Water Lubricated Bearing. Part II: Further Insight Into the Film Thickness Ratio Lambda
,”
Ind. Lubr. Tribol.
,
68
(
3
), pp.
416
429
.
9.
Xie
,
Z.
, and
Zhu
,
W.
,
2021
, “
Theoretical and Experimental Exploration on the Micro Asperity Contact Load Ratios and Lubrication Regimes Transition for Water-Lubricated Stern Tube Bearing
,”
Tribol. Int.
,
164
, p.
107105
.
10.
Xie
,
Z.
, and
Liu
,
H.
,
2020
, “
Experimental Research on the Interface Lubrication Regimes Transition of Water Lubricated Bearing
,”
Mech. Syst. Signal Process.
,
136
, p.
106522
.
11.
Xie
,
Z.
,
Shen
,
N.
,
Zhu
,
W.
,
Tian
,
W.
, and
Hao
,
L.
,
2021
, “
Theoretical and Experimental Investigation on the Influences of Misalignment on the Lubrication Performances and Lubrication Regimes Transition of Water Lubricated Bearing
,”
Mech. Syst. Signal Process.
,
149
, p.
107211
.
12.
Zhu
,
D.
,
Wang
,
J.
, and
Jane Wang
,
Q.
,
2015
, “
On the Stribeck Curves for Lubricated Counterformal Contacts of Rough Surfaces
,”
ASME J. Tribol.
,
137
(
2
), p.
021501
.
13.
Zhu
,
D.
, and
Jane Wang
,
Q.
,
2013
, “
Effect of Roughness Orientation on the Elastohydrodynamic Lubrication Film Thickness
,”
ASME J. Tribol.
,
135
(
3
), p.
031501
.
14.
Karupannasamy
,
D. K.
,
de Rooij
,
M. B.
, and
Schipper
,
D. J.
,
2013
, “
Multi-scale Friction Modelling for Rough Contacts Under Sliding Conditions
,”
Wear
,
308
(
1–2
), pp.
222
231
.
15.
van der Meer
,
G. H. G.
,
Quinci
,
F.
,
Litwin
,
W.
,
Wodtke
,
M.
, and
van Ostayen
,
R. A. J.
,
2023
, “
Experimental Comparison of the Transition Speed of a Hydrodynamic Journal Bearing Lubricated With Oil and Magnetorheological Fluid
,”
Tribol. Int.
,
189
, p.
108976
.
16.
Gong
,
J.
,
Liu
,
K.
,
Zheng
,
Y.
, and
Meng
,
F.
,
2023
, “
Thermal-Elastohydrodynamic Lubrication Study of Misaligned Journal Bearing in Wind Turbine Gearbox
,”
Tribol. Int.
,
188
, p.
108887
.
17.
Fei
,
W.
,
Tan
,
J.
,
Li
,
H.
,
Zhu
,
C.
,
Sun
,
Z.
, and
Wang
,
H.
,
2024
, “
Influences of Planet Gear Journal Bearing on Dynamic Characteristics of Megawatt-Scale Wind Turbine Drivetrains: Simulations and Experiments
,”
Mech. Syst. Signal Process.
,
221
, p.
111747
.
18.
He
,
T.
,
Zou
,
D.
,
Lu
,
X.
,
Guo
,
Y.
,
Wang
,
Z.
, and
Li
,
W.
,
2014
, “
Mixed-Lubrication Analysis of Marine Stern Tube Bearing Considering Bending Deformation of Stern Shaft and Cavitation
,”
Tribol. Int.
,
73
, pp.
108
116
.
19.
Gu
,
C.
,
Meng
,
X.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2017
, “
Transient Analysis of the Textured Journal Bearing Operating With the Piezoviscous and Shear-Thinning Fluids
,”
ASME J. Tribol.
,
139
(
5
), p.
051708
.
20.
Han
,
Y.
,
Xiong
,
S.
,
Wang
,
J.
, and
Jane Wang
,
Q.
,
2016
, “
A New Singularity Treatment Approach for Journal-Bearing Mixed Lubrication Modeled by the Finite Difference Method With a Herringbone Mesh
,”
ASME J. Tribol.
,
138
(
1
), p.
011704
.
21.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
153
159
.
22.
Xiang
,
G.
,
Han
,
Y.
,
He
,
T.
,
Wang
,
J.
,
Xiao
,
K.
, and
Li
,
J.
,
2020
, “
Wear and Fluid-Solid-Thermal Transient Coupled Model for Journal Bearings
,”
Appl. Math. Model.
,
85
, pp.
19
45
.
23.
Gu
,
C.
,
Dai
,
L.
, and
Zhang
,
D.
,
2023
, “
Research on Start-Stop Performance of Journal Bearing Based on an Isothermal and Mixed Lubrication Model With Different Acceleration and Deceleration Forms in Consideration
,”
ASME J. Tribol.
,
145
(
5
), p.
054101
.
24.
Gu
,
C.
,
Meng
,
X.
,
Zhang
,
D.
, and
Xie
,
Y.
,
2017
, “
A Transient Analysis of the Textured Journal Bearing Considering Micro and Macro Cavitation During an Engine Cycle
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
231
(
10
), pp.
1289
1306
.
25.
Ovcharenko
,
A.
,
Halperin
,
G.
,
Verberne
,
G.
, and
Etsion
,
I.
,
2007
, “
In Situ Investigation of the Contact Area in Elastic–Plastic Spherical Contact During Loading–Unloading
,”
Tribol. Lett.
,
25
(
2
), pp.
153
160
.
26.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
27.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2012
, “
Asperity Micro-Contact Models as Applied to the Deformation of Rough Line Contact
,”
Tribol. Int.
,
52
, pp.
61
74
.
28.
Hagemann
,
T.
,
Ding
,
H.
,
Radtke
,
E.
, and
Schwarze
,
H.
,
2021
, “
Operating Behavior of Sliding Planet Gear Bearings for Wind Turbine Gearbox Applications—Part II: Impact of Structure Deformation
,”
Lubricants
,
9
(
10
), p.
98
.
29.
Wang
,
Y.
,
Zhang
,
C.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
2002
, “
A Mixed-TEHD Analysis and Experiment of Journal Bearings Under Severe Operating Conditions
,”
Tribol. Int.
,
35
(
6
), pp.
395
407
.
30.
Su
,
B.
,
Huang
,
L.
,
Huang
,
W.
, and
Wang
,
X.
,
2017
, “
The Load Carrying Capacity of Textured Sliding Bearings With Elastic Deformation
,”
Tribol. Int.
,
109
, pp.
86
96
.
31.
Zhu
,
D.
, and
Cheng
,
H. S.
,
1988
, “
Effect of Surface Roughness on the Point Contact EHL
,”
ASME J. Tribol.
,
110
(
1
), pp.
32
37
.
32.
Fang
,
C.
,
Peng
,
Y.
,
Zhou
,
W.
,
Gao
,
G.
, and
Meng
,
X.
,
2023
, “
Finite Element Modeling and Simulation of Mixed Elastohydrodynamic Lubrication for the Finite Line Contact Under Tilting Loads
,”
Tribol. Int.
,
186
, p.
108660
.
33.
Fang
,
C.
,
Zhu
,
A.
,
Zhou
,
W.
,
Peng
,
Y.
, and
Meng
,
X.
,
2022
, “
On the Stiffness and Damping Characteristics of Line Contacts Under Transient Elastohydrodynamic Lubrication
,”
Lubricants
,
10
(
4
), p.
73
.
34.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation
,”
J. Lubr. Technol.
,
98
(
2
), pp.
223
228
.
35.
Yin
,
J.
,
Meng
,
X.
,
Cheng
,
S.
,
Fang
,
X.
, and
Fan
,
X.
,
2024
, “
Tribo-Dynamics Modeling and Analysis of Planetary Gear Bearing Systems in Wind Turbines Considering Sun-Planetary-Ring Helical Gear Mesh and Elastic Deformation Effects
,”
Tribol. Int.
,
200
, p.
110059
.
36.
Meng
,
F.
, and
Chen
,
Y.
,
2015
, “
Analysis of Elasto-Hydrodynamic Lubrication of Journal Bearing Based on Different Numerical Methods
,”
Ind. Lubr. Tribol.
,
67
(
5
), pp.
486
497
.
37.
Zhang
,
K.
,
Chen
,
Q.
,
Zhang
,
Y.
,
Zhu
,
J.
,
Wang
,
M.
, and
Feng
,
K.
,
2024
, “
Numerical and Experimental Investigations on Thermoelastic Hydrodynamic Performance of Planetary Gear Sliding Bearings in Wind Turbine Gearboxes
,”
Tribol. Int.
,
191
, p.
109081
.
38.
Zhang
,
C.
,
Zhang
,
X.
,
Dong
,
P.
,
Zhang
,
H.
,
Zheng
,
Z.
,
Zhang
,
J.
, and
Xu
,
B.
,
2024
, “
Composite Thermal Oil Film Lubrication Model for Hybrid Journal Bearings
,”
Tribol. Int.
,
194
, p.
109556
.
39.
Hagemann
,
T.
,
Ding
,
H.
,
Radtke
,
E.
, and
Schwarze
,
H.
,
2021
, “
Operating Behavior of Sliding Planet Gear Bearings for Wind Turbine Gearbox Applications—Part I: Basic Relations
,”
Lubricants
,
9
(
10
), p.
97
.
40.
Lv
,
Y.
,
Liu
,
H.
,
Chen
,
Z.
,
Chang
,
W.
,
Zhang
,
H.
, and
Li
,
H.
,
2024
, “
Lubrication Condition Monitoring of Journal Bearings in Diesel Engine Based on Thermoelectricity
,”
Friction.
,
12
(
11
), pp.
2532
2547
.
41.
Bukovnik
,
S.
,
Offner
,
G.
,
Čaika
,
V.
,
Priebsch
,
H. H.
, and
Bartz
,
W. J.
,
2007
, “
Thermo-Elasto-Hydrodynamic Lubrication Model for Journal Bearing Including Shear Rate-Dependent Viscosity
,”
Lubr. Sci.
,
19
(
4
), pp.
231
245
.
42.
Allmaier
,
H.
,
Priestner
,
C.
,
Reich
,
F. M.
,
Priebsch
,
H. H.
, and
Novotny-Farkas
,
F.
,
2013
, “
Predicting Friction Reliably and Accurately in Journal Bearings—Extending the EHD Simulation Model to TEHD
,”
Tribol. Int.
,
58
, pp.
20
28
.
43.
Guo
,
H.
,
Bao
,
J.
,
Zhang
,
S.
, and
Shi
,
M.
,
2022
, “
Experimental and Numerical Study on Mixed Lubrication Performance of Journal Bearing Considering Misalignment and Thermal Effect
,”
Lubricants
,
10
(
10
), p.
262
.
44.
Zhang
,
C.
,
Wei
,
J.
,
Wang
,
F.
,
Hou
,
S.
,
Zhang
,
A.
, and
Lim
,
T. C.
,
2020
, “
Dynamic Model and Load Sharing Performance of Planetary Gear System With Journal Bearing
,”
Mech. Mach. Theory
,
151
, p.
103898
.
45.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
46.
Meng
,
F. M.
,
Cen
,
S. Q.
,
Hu
,
Y. Z.
, and
Wang
,
H.
,
2009
, “
On Elastic Deformation, Inter-Asperity Cavitation and Lubricant Thermal Effects on Flow Factors
,”
Tribol. Int.
,
42
(
2
), pp.
260
274
.
47.
Morales-Espejel
,
G. E.
,
2009
, “
Flow Factors for Non-Gaussian Roughness in Hydrodynamic Lubrication: An Analytical Interpolation
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
(
6
), pp.
1433
1441
.
48.
Gu
,
C.
,
Sheng
,
X.
,
Zhang
,
D.
, and
Meng
,
X.
,
2024
, “
Thermal Mixed Elastohydrodynamic Lubrication Modeling and Analysis of the Lubricated Non-Conformal Contacts With Non-Gaussian Surface Roughness and Coating
,”
Tribol. Int.
,
194
, p.
109541
.
49.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
,
39
(
4
), pp.
890
898
.
50.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing—Part I: Theoretical Modeling
,”
ASME J. Tribol.
,
137
(
4
), p.
041703
.
51.
Luo
,
Q.
,
Dong
,
Q.
,
Zhao
,
B.
,
Yang
,
H.
,
Wei
,
J.
, and
Zhao
,
B.
,
2024
, “
A Numerical Investigation of Mixed Thermal Elastohydrodynamic Lubrication in Tilting-Pad Journal Bearing
,”
ASME J. Tribol.
,
146
(
9
), p.
092202
.
52.
Wang
,
Y.
,
Wang
,
Q. J.
,
Lin
,
C.
, and
Shi
,
F.
,
2006
, “
Development of a Set of Stribeck Curves for Conformal Contacts of Rough Surfaces
,”
Tribol Trans.
,
49
(
4
), pp.
526
535
.
53.
Meng
,
X.
,
Gu
,
C.
, and
Xie
,
Y.
,
2017
, “
Elasto-Plastic Contact of Rough Surfaces: A Mixed-Lubrication Model for the Textured Surface Analysis
,”
Meccanica
,
52
, pp.
1541
1559
.
54.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
J. Lubr. Technol.
,
101
(
2
), pp.
220
229
.
You do not currently have access to this content.