Abstract

The fatigue life of rolling bearings is a critical factor in their selection and application, driving ongoing research aimed at enhancing their performance. Among the solutions explored, the introduction of hollow rollers has been noted for their lighter weight and reduced stress. However, experimental results have shown that hollow rollers can suffer catastrophic failures under low static loading conditions. Recent studies have demonstrated that layered cylindrical hollow rollers (LCHRs) outperform both conventional solid and hollow cylindrical rollers under similar loading conditions. This warrants further investigation into the potential benefits of LCHR. This study aims to estimate the static load carrying capacity of LCHR bearing in comparison to hollow cylindrical roller bearings having different hollowness percentage. Corrected experimental results from individual roller-on-plate tests showed excellent agreement (within 5%) with numerical analyses, validating the numerical approach. Key parameters such as von Mises stress, contact pressure, bending stress, and contact width were obtained through numerical analysis. Additionally, a static load test rig was designed and developed to estimate the static load carrying capacity of the bearings under examination. The results of full bearing sample tests for various roller types corroborated the individual roller-on-plate test findings. The observed superior static load carrying capacity and promising semi-contact width of LCHR indicate their potential for extended fatigue life compared to solid and hollow rollers.

References

1.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Advanced Concepts of Bearing Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Erdemir
,
A.
,
1999
, “Rolling-Contact Fatigue Resistance of Hard Coatings on Bearing Steels,” Argonne National Laboratory, IL.
3.
Korrenn
,
H.
,
1970
, “
The Axial Load-Carrying Capacity of Radial Cylindrical Roller Bearings
,”
ASME J. Lubr. Technol.
,
92
(
1
), pp.
129
134
.
4.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
5.
Kang
,
Y. S.
,
2013
, “Rolling Bearing Contact Fatigue,”
Encyclopedia of Tribology
,
Springer US
,
Boston, MA
, pp.
2820
2824
.
6.
Gupta
,
P. K.
, and
Zaretsky
,
E. V.
,
2018
, “
New Stress-Based Fatigue Life Models for Ball and Roller Bearings
,”
Tribol. Trans.
,
61
(
2
), pp.
304
324
.
7.
Zhao
,
H.
,
1998
, “
Analysis of Load Distributions Within Solid and Hollow Roller Bearings
,”
ASME J. Tribol.
,
120
(
1
), pp.
134
139
.
8.
Abu-Jadayil
,
W. M.
, and
Khraisat
,
W. A.
,
2010
, “
Predicting Optimum Hollowness of Normally Loaded Cylindrical Rollers Using Finite Element Analysis
,”
Mater. Sci. Technol.
,
26
(
2
), pp.
176
183
.
9.
Harris
,
T. A.
, and
Aaronson
,
S. F.
,
1967
, “
An Analytical Investigation of Cylindrical Roller Bearings Having Annular Rollers
,”
ASLE Trans.
,
10
(
3
), pp.
235
242
.
10.
Murthy
,
C. S. C.
, and
Rao
,
A. R.
,
1983
, “
Mechanics and Behaviour of Hollow Cylindrical Members in Rolling Contact
,”
Wear
,
87
(
3
), pp.
287
296
.
11.
Bhateja
,
C. P.
, and
Hahn
,
R. S.
,
1980
, “
A Hollow Roller Bearing for Use in Precision Machine Tools
,”
CIRP Ann.
,
29
(
1
), pp.
303
307
.
12.
Ivannikov
,
V.
,
Leontiev
,
M.
,
Degtyarev
,
S.
, and
Popov
,
V.
,
2022
, “
Analysis of Radial Roller Bearing Rating Life in Complex Loading Conditions
,”
ASME J. Tribol.
,
144
(
3
), p.
031201
.
13.
Bowen
,
W. L.
, and
Murphy
,
T. W.
,
1981
, “
High Speed Testing of the Hollow Roller Bearing
,”
ASME J. Lubr. Technol.
,
103
(
1
), pp.
1
5
.
14.
Bhateja
,
C. P.
, and
Pine
,
R. D.
,
1981
, “
The Rotational Accuracy Characteristics of the Preloaded Hollow Roller Bearing
,”
ASME J. Lubr. Technol.
,
103
(
1
), pp.
6
12
.
15.
Abu Jadayil
,
W. M.
, and
Jaber
,
N. M.
,
2010
, “
Numerical Prediction of Optimum Hollowness and Material of Hollow Rollers Under Combined Loading
,”
Mater. Des.
,
31
(
3
), pp.
1490
1496
.
16.
Goodelle
,
R. A.
,
Derner
,
W. J.
, and
Root
,
L. E.
,
1970
, “
A Practical Method for Determining Contact Stresses in Elastically Loaded Line Contacts
,”
ASLE Trans.
,
13
(
4
), pp.
269
277
.
17.
Derner
,
W. J.
,
Goodelle
,
R. A.
,
Root
,
L. E.
, and
Rung
,
R.
,
1972
, “
The Hollow-Ended Roller—A Solution for Improving Fatigue Life in Asymmetrically Loaded Cylindrical Roller Bearings
,”
ASME J. Lubr. Technol.
,
94
(
2
), pp.
153
162
.
18.
Gupta
,
P. K.
, and
Walowit
,
J. A.
,
1974
, “
Contact Stresses Between an Elastic Cylinder and a Layered Elastic Solid
,”
ASME J. Lubr. Technol.
,
96
(
2
), pp.
250
257
.
19.
Hong
,
L.
, and
Jianjun
,
L.
,
1997
, “
Analysis of Contact Problems on Hollow Cylindrical Rollers
,”
ASME J. Tribol.
,
17
(
3
), pp.
253
259
.
20.
Bamberger
,
E. N.
,
Parker
,
R. J.
, and
Dietrich
,
M. W.
,
1976
, “Flexural Fatigue of Hollow Rolling Elements,” October.
21.
Bamberger
,
E. N.
, and
Parker
,
R. J.
,
1978
, “
Effect of Wall Thickness and Material on Flexural Fatigue of Hollow Rolling Elements
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
39
46
.
22.
Liu
,
J.
, and
Shao
,
Y.
,
2018
, “
An Analytical Dynamic Model of a Hollow Cylindrical Roller Bearing
,”
ASME J. Tribol.
,
140
(
6
), p.
061403
.
23.
Arthanari
,
S.
,
Manivannan
,
C.
,
Palanisamy
,
S.
, and
Ponnan
,
P.
,
2024
, “
Finite Element Analysis of Solid and Hollow Roller Bearings to Predict the Influence of Contact Factors on Cage Slip
,”
Appl. Mech. Mater.
,
920
(
6
), pp.
111
126
.
24.
Bayrak
,
R.
,
2024
, “
Finite Element Contact Analysis of the Hollow Cylindrical Roller Bearings
,”
Sigma J. Eng. Nat. Sci.
,
42
(
1
), pp.
121
129
.
25.
Bai
,
G.
,
Sun
,
W.
,
Tian
,
G.
,
Sun
,
Q.
, and
Sun
,
L.
,
2024
, “
Efficient Strain Analysis of Radially Loaded Hollow Cylindrical Roller Using Symbolic Regression
,”
IEEE Trans. Instrum. Meas.
,
73
(
1
), pp.
1
12
.
26.
Bhavsar
,
N. M.
, and
Bassan
,
G. D.
,
2023
, “
Quantitative Analysis and Validation Using Computational Approach for Hollow Spherical Roller Bearing 22212E
,”
Mater. Today: Proc.
,
76
(
3
), pp.
551
555
.
27.
Qiu
,
L.
,
Chen
,
X.
,
Liu
,
X.
,
Shen
,
X.
, and
Wang
,
S.
,
2024
, “
Experimental and Theoretical Study on Forming Film Properties of Hollow Cylindrical Rollers
,”
Tribol. Trans.
,
67
(
2
), pp.
222
234
.
28.
Liu
,
X.
,
Qiu
,
L.
, and
Chen
,
X.
,
2022
, “
Mechanical Properties of Coupled Bending and Contact to Hollow Cylindrical Roller Contacts
,”
Tribol. Trans.
,
65
(
6
), pp.
963
976
.
29.
Solanki
,
M. T.
, and
Vakharia
,
D. P.
,
2017
, “
Current Investigation in Layered Cylindrical Hollow Roller Bearing Using Elastic Finite Element Analysis
,”
Mater. Today: Proc.
,
4
(
9
), pp.
10020
10024
.
30.
Solanki
,
M. T.
, and
Vakharia
,
D.
,
2017
, “
A Finite Element Analysis of an Elastic Contact Between a Layered Cylindrical Hollow Roller and Flat Contact
,”
Ind. Lubr. Tribol.
,
69
(
1
), pp.
30
41
.
31.
Bhatt
,
B.
,
1978
, “General Catalogue,”
Canonical Niksepa
,
Brill
,
Berlin
, pp.
14
32
.
32.
Solanki
,
M. T.
, and
Vakharia
,
D.
,
2018
, “
Development of a Mathematical Model to Determine Optimum Hollowness in Layered Cylindrical Hollow Rolling Element Using FE Analysis
,”
Ind. Lubr. Tribol.
,
70
(
4
), pp.
733
745
.
33.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Essential Concepts of Bearing Technology
,
CRC Press
,
Boca Raton, FL
.
34.
SKF Group
,
2018
, “
Rolling Bearings SKF Mobile Apps
,” Pub Bu/P1 17000/1 En, p.
88
.
35.
Guo
,
Y. B.
, and
Liu
,
C. R.
,
2002
, “
Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
1
9
.
36.
Solanki
,
M. T.
, and
Vakharia
,
D.
,
2017
, “
Extending Hertz Equation for an Elastic Contact Between a Layered Cylindrical Hollow Roller and Flat Plate Through an Experimental Technique
,”
Ind. Lubr. Tribol.
,
69
(
2
), pp.
312
324
.
37.
Xu
,
K.
,
Chu
,
N. R.
, and
Jackson
,
R. L.
,
2022
, “
An Investigation of the Elastic Cylindrical Line Contact Equations for Plane Strain and Stress Considering Friction
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
236
(
9
), pp.
1889
1897
.
38.
Zhang
,
H.
, and
Etsion
,
I.
,
2021
, “
Static Friction Behavior of Spherical Contact With Ultrathin Soft Coating
,”
ASME J. Tribol.
,
143
(
4
), p.
044501
.
39.
Goltsberg
,
R.
, and
Etsion
,
I.
,
2015
, “
A Universal Model for the Load–Displacement Relation in an Elastic Coated Spherical Contact
,”
Wear
,
322–323
, pp.
126
132
.
40.
Cheng
,
W.
,
1996
, “
Experimental and Numerical Study of Multibody Contact System With Roller Bearing–-Part I: An Improved Footprint Test Method
,”
Tribol. Trans.
,
39
(
1
), pp.
75
80
.
41.
Klobčar
,
D.
,
Tušek
,
J.
, and
Taljat
,
B.
,
2008
, “
Thermal Fatigue of Materials for Die-Casting Tooling
,”
Mater. Sci. Eng. A
,
472
(
1–2
), pp.
198
207
.
You do not currently have access to this content.