Abstract

In the transmission process, the thermal deformation of gears due to external factors, coupled with the thermal expansion of the tooth profile induced by flash temperature from surface friction, significantly impacts the time-varying mesh stiffness (TVMS) characteristics. Therefore, this article proposes a novel analytical model for the TVMS of helical gears that considers these factors. In this model, the thermal deformation of the gear foundation under a bulk temperature field is first determined using the displacement method. Blok's theory is then applied to establish the relationship between tooth surface friction and flash temperature, leading to the derivation of the actual tooth profile expansion equation under steady-state conditions. After that, based on this equation and considering the friction force in tangential, radial, and axial directions, the gear tooth and foundation stiffness of helical gear in transverse and axial directions under a steady-state temperature field are accurately established. Finally, the proposed model is obtained by coupling each stiffness. By comparing with the finite element (FE) result, the model is validated, and the influence of friction coefficient, bulk temperature, and gear parameters on TVMS is studied. The analytical model and findings provide valuable insights for optimizing gear parameter design.

References

1.
Seo
,
J. J.
,
Yoon
,
H.
,
Ha
,
H.
,
Hong
,
D. P.
, and
Kim
,
W.
,
2011
, “
Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing Under Dynamic Loading Conditions
,”
Adv. Mech. Eng.
,
295
, pp.
1544
1547
. www.scientific.net/AMR.295-297.1544
2.
Ye
,
Z. H.
,
Wang
,
L. Q.
,
Chen
,
G. C.
, and
Tang
,
D.
,
2017
, “
Analysis of Thermo-Mechanical Coupling of High-Speed Angular-Contact Ball Bearings
,”
Adv. Mech. Eng.
,
9
(
6
), p.
1687814017702812
. www.scientific.net/AMM.397-400.131
3.
Handschuh
,
M.
,
Guner
,
A.
, and
Kahraman
,
A.
,
2023
, “
An Experimental Investigation of Windage and Oil Churning Power Losses of Gears and Discs
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
237
(
1
), pp.
163
177
.
4.
Koffe
,
G.
,
Ville
,
F.
,
Changenet
,
C.
, and
Velex
,
P.
,
2009
, “
Investigations on the Power Losses and Thermal Effects in Gear Transmissions
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
223
(
3
), pp.
469
479
.
5.
Liu
,
C. Z.
,
Qin
,
D. T.
, and
Liao
,
Y. H.
,
2014
, “
Dynamic Model of Variable Speed Process for Herringbone Gears Including Friction Calculated by Variable Friction Coefficient
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041006
.
6.
Sheng
,
L. C.
,
Xu
,
M. C.
,
Sun
,
Q.
,
Li
,
W.
, and
Ye
,
G.
,
2023
, “
Nonlinear Dynamics Analysis of Gear Transmission System Considering Tooth Surface Friction and Thermal Deformation
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn.
,
237
(
2
), pp.
220
235
.
7.
Liu
,
H.
,
Yan
,
P. F.
, and
Gao
,
P.
,
2020
, “
Effects of Temperature on the Time-Varying Mesh Stiffness, Vibration Response, and Support Force of a Multi-Stage Planetary Gear
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051110
.
8.
Marafona
,
J. D. M.
,
Marques
,
P. M. T.
,
Martins
,
R. C.
, and
Seabra
,
J. H. O.
,
2021
, “
Mesh Stiffness Models for Cylindrical Gears: A Detailed Review
,”
Mech. Mach. Theory
,
166
, p.
104472
.
9.
Ma
,
H.
,
Song
,
R. Z.
,
Pang
,
X.
, and
Wen
,
B. C.
,
2014
, “
Time-Varying Mesh Stiffness Calculation of Cracked Spur Gears
,”
Eng. Fail. Anal.
,
44
, pp.
179
194
.
10.
Ma
,
H.
,
Zeng
,
J.
,
Feng
,
R. J.
,
Pang
,
X.
, and
Wen
,
B. C.
,
2016
, “
An Improved Analytical Method for Mesh Stiffness Calculation of Spur Gears With Tip Relief
,”
Mech. Mach. Theory
,
98
, pp.
64
80
.
11.
Sun
,
Y. N.
,
Ma
,
H.
,
Huangfu
,
Y. F.
,
Chen
,
K. K.
,
Che
,
L. Y.
, and
Wen
,
B. C.
,
2018
, “
A Revised Time-Varying Mesh Stiffness Model of Spur Gear Pairs With Tooth Modifications
,”
Mech. Mach. Theory
,
129
, pp.
261
278
.
12.
Yu
,
W.
, and
Mechefske
,
C. K.
,
2019
, “
A New Model for the Single Mesh Stiffness Calculation of Helical Gears Using the Slicing Principle
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
43
(
S1
), pp.
503
515
.
13.
Xie
,
C. Y.
,
Hua
,
L.
,
Han
,
X. H.
,
Lan
,
J.
,
Wan
,
X. J.
, and
Xiong
,
X. S.
,
2018
, “
Analytical Formulas for Gear Body-Induced Tooth Deflections of Spur Gears Considering Structure Coupling Effect
,”
Int. J. Mech. Sci.
,
148
, pp.
174
190
.
14.
Xie
,
C. Y.
,
Hua
,
L.
,
Lan
,
J.
,
Han
,
X. H.
,
Wan
,
X. J.
, and
Xiong
,
X. S.
,
2018
, “
Improved Analytical Models for Mesh Stiffness and Load Sharing Ratio of Spur Gears Considering Structure Coupling Effect
,”
Mech. Syst. Signal Process.
,
111
, pp.
331
347
.
15.
Xie
,
C. Y.
, and
Shu
,
X. D.
,
2021
, “
A New Mesh Stiffness Model for Modified Spur Gears With Coupling Tooth and Body Flexibility Effects
,”
Appl. Math. Modell.
,
91
, pp.
1194
1210
.
16.
Xie
,
C. Y.
, and
Yu
,
W.
,
2022
, “
Gear Dynamic Modelling Based on the Concept of Dynamic Mesh Stiffness: Theoretical Study and Experimental Verification
,”
J. Mech. Sci. Technol.
,
36
(
10
), pp.
4953
4965
.
17.
Wang
,
Q. B.
,
Zhao
,
B.
,
Fu
,
Y.
,
Kong
,
X. G.
, and
Ma
,
H.
,
2018
, “
An Improved Time-Varying Mesh Stiffness Model for Helical Gear Pairs Considering Axial Mesh Force Component
,”
Mech. Syst. Signal Process.
,
106
, pp.
413
429
.
18.
Luo
,
W.
,
Qiao
,
B. J.
,
Shen
,
Z. X.
,
Yang
,
Z. B.
,
Cao
,
H. R.
, and
Chen
,
X. F.
,
2020
, “
Influence of Sliding Friction on the Dynamic Characteristics of a Planetary Gear Set With the Improved Time-Varying Mesh Stiffness
,”
ASME J. Mech. Des.
,
142
(
7
), p.
073302
.
19.
Sun
,
Z.
,
Chen
,
S. Y.
,
Tao
,
X.
, and
Hu
,
Z. H.
,
2022
, “
Research on Dynamic Characteristics of Gear System Considering the Influence of Temperature on Material Performance
,”
J. Vib. Control
,
28
(
13–14
), pp.
1792
1803
.
20.
Luo
,
B.
, and
Li
,
W.
,
2020
, “
Investigation on the Influence of Heat on the Dynamic Characteristics of a Gear Transmission System
,”
Eng. Fail. Anal.
,
116
, p.
104724
.
21.
Hu
,
B.
,
Zhou
,
C. J.
,
Wang
,
H. B.
, and
Chen
,
S. Y.
,
2021
, “
Nonlinear Tribo-Dynamic Model and Experimental Verification of a Spur Gear Drive Under Loss-of-Lubrication Condition
,”
Mech. Syst. Signal Process.
,
153
, p.
107509
.
22.
Zhou
,
C. J.
,
Xing
,
M. C.
,
Wang
,
H. B.
, and
Hu
,
B.
,
2021
, “
A Novel Thermal Network Model for Predicting the Contact Temperature of Spur Gears
,”
Int. J. Therm. Sci.
,
161
, p.
106703
.
23.
Fernandes
,
C. M. C. G.
,
Rocha
,
D. M. P.
,
Martins
,
R. C.
,
Magalhães
,
L.
, and
Seabra
,
J. H. O.
,
2018
, “
Finite Element Method Model to Predict Bulk and Flash Temperatures on Polymer Gears
,”
Tribol. Int.
,
120
, pp.
255
268
.
24.
Rocha
,
D. M. P.
,
2017
, “
Bulk Temperature in Polymer-Metal Hybrid Gears
,”
Ph.D. thesis
,
Unibersidade do Porto
,
Porto, Portugal
.
25.
Sun
,
Z.
,
Chen
,
S. Y.
,
Hu
,
Z. H.
, and
Lei
,
D. C.
,
2022
, “
Vibration Response Analysis of a Gear-Rotor-Bearing System Considering Steady-State Temperature
,”
Nonlinear Dyn.
,
107
(
1
), pp.
477
493
.
26.
Lu
,
R. X.
, and
Tang
,
W. C.
,
2022
, “
Analytical Calculation Models for Mesh Stiffness and Backlash of Spur Gears Under Temperature Effects
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
236
(
8
), pp.
4450
4462
.
27.
Sun
,
Z.
,
Chen
,
S. Y.
,
Hu
,
Z. H.
,
Tao
,
X.
, and
Chen
,
Y. F.
,
2022
, “
Analytical Models for Thermal Deformation and Mesh Stiffness of Spur Gears Under Steady Temperature Field
,”
Eng. Fail. Anal.
,
133
, p.
105972
.
28.
Jolivet
,
S.
,
Mezghani
,
S.
,
El Mansori
,
M.
,
Vargiolu
,
R.
, and
Zahouani
,
H.
,
2017
, “
Experimental Study of the Contribution of Gear Tooth Finishing Processes to Friction Noise
,”
Tribol. Int.
,
115
, pp.
70
77
.
29.
Liu
,
J.
,
Pang
,
R. K.
,
Ding
,
S. Z.
, and
Li
,
X. B.
,
2020
, “
Vibration Analysis of a Planetary Gear With the Flexible Ring and Planet Bearing Fault
,”
Measurement
,
165
, p.
108100
.
30.
Wang
,
S. Y.
, and
Zhu
,
R. P.
,
2023
, “
Evaluating the Time-Varying Mesh Stiffness of Planetary Gear Set With Gear Crack Considering the Friction Force Under Mixed Elastohydrodynamic Lubrication Condition
,”
ASME J. Tribol.
,
145
(
4
), p.
044102
.
31.
Wang
,
S. Y.
, and
Zhu
,
R. P.
,
2022
, “
Vibration-Based Fault Diagnosis of Helical Gear Pair With Tooth Surface Wear Considering Time-Varying Friction Coefficient Under Mixed Elastohydrodynamic Lubrication Condition
,”
ASME J. Tribol.
,
144
(
7
), p.
071603
.
32.
Jiang
,
H. J.
, and
Liu
,
F. H.
,
2016
, “
Dynamic Features of Three-Dimensional Helical Gears Under Sliding Friction With Tooth Breakage
,”
Eng. Fail. Anal.
,
70
, pp.
305
322
.
33.
Jiang
,
H. J.
, and
Liu
,
F. H.
,
2022
, “
Dynamic Characteristics of Helical Gears Incorporating the Effects of Coupled Sliding Friction
,”
Meccanica
,
57
(
3
), pp.
523
539
.
34.
Li
,
W.
,
Zhai
,
P. F.
,
Tian
,
J. Y.
, and
Luo
,
B.
,
2018
, “
Thermal Analysis of Helical Gear Transmission System Considering Machining and Installation Error
,”
Int. J. Mech. Sci.
,
149
, pp.
1
17
.
35.
Shi
,
J. F.
,
Gou
,
X.-F.
, and
Zhu
,
L.-Y.
,
2020
, “
Calculation of Time-Varying Backlash for an Involute Spur Gear Pair
,”
Mech. Mach. Theory
,
152
, p.
103956
.
36.
Yang
,
H. B.
,
Shi
,
W. K.
,
Chen
,
Z. Y.
, and
Guo
,
N. A. C.
,
2022
, “
An Improved Analytical Method for Mesh Stiffness Calculation of Helical Gear Pair Considering Time-Varying Backlash
,”
Mech. Syst. Signal Process.
,
170
, p.
108882
.
37.
Blok
,
H.
,
1963
, “
The Flash Temperature Concept
,”
Wear
,
6
(
6
), pp.
483
494
.
38.
Blok
,
H.
,
1937
, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions
,”
Proc. Instn. Mech. Engrs.
,
2
, p.
222
.
39.
Fernandes
,
C. M. C. G.
,
Rocha
,
D. M. P.
,
Martins
,
R. C.
,
Magalhães
,
L.
, and
Seabra
,
J. H. O.
,
2019
, “
Hybrid Polymer Gear Concepts to Improve Thermal Behavior
,”
ASME J. Tribol.
,
141
(
3
), p.
032201
.
40.
Xu
,
H.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Maddock
,
D. G.
,
2007
, “
Prediction of Mechanical Efficiency of Parallel-Axis Gear Pairs
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
58
68
.
41.
Wang
,
S. Y.
, and
Zhu
,
R. P.
,
2022
, “
An Improved Mesh Stiffness Model of Helical Gear Pair Considering Axial Mesh Force and Friction Force Influenced by Surface Roughness Under EHL Condition
,”
Appl. Math. Modell.
,
102
, pp.
453
471
.
You do not currently have access to this content.