Abstract

Erosion is an inevitable and persistent form of wear, which predominantly occurs on curved surfaces within the realm of fluid machinery. To address this issue, we have developed a novel model incorporating two bionic elements, namely bionic arrangement and bionic morphology, and applied it to explore the erosion resistance of cylindrical surfaces. Specifically, the bionic arrangement is inspired by the phyllotaxis arrangement observed in plants, while the bionic morphology involves the incorporation of convex unit morphology found in desert organisms. Employing a comprehensive approach encompassing erosion testing and numerical analysis, we established two comparative test groups that differed in terms of arrangement and distribution density. This comprehensive analysis sheds light on the erosion resistance mechanism inherent in the combined bionic model. The findings of this study hold significant theoretical implications for the advancement of bionic anti-erosion technology and its practical applications in engineering.

References

1.
Zheng
,
J.
,
Dai
,
P.
, and
Zhang
,
J.
,
2015
, “
Tidal Stream Energy in China
,”
Proc. Eng.
,
116
, pp.
880
887
.
2.
Brown
,
A. J. G.
,
Neill
,
S. P.
, and
Lewis
,
M. J.
,
2017
, “
Tidal Energy Extraction in Three-Dimensional Ocean Models
,”
Renewable Energy
,
114
, pp.
244
257
.
3.
Pacheco
,
A.
, and
Ferreira
,
Ó
,
2016
, “
Hydrodynamic Changes Imposed by Tidal Energy Converters on Extracting Energy on a Real Case Scenario
,”
Appl. Energy
,
180
, pp.
369
385
.
4.
Ouro
,
P.
,
Harrold
,
M.
,
Stoesser
,
T.
, and
Bromley
,
P.
,
2017
, “
Hydrodynamic Loadings on a Horizontal Axis Tidal Turbine Prototype
,”
J. Fluid Struct
,
71
, pp.
78
95
.
5.
Kaufmann
,
N.
,
Carolus
,
T.
, and
Starzmann
,
R.
,
2019
, “
Turbines for Modular Tidal Current Energy Converters
,”
Renewable Energy
,
142
, pp.
451
460
.
6.
Stansby
,
P. K.
, and
Ouro
,
P.
,
2022
, “
Modelling Marine Turbine Arrays in Tidal Flows
,”
J. Hydraul Res.
,
60
(
2
), pp.
187
204
.
7.
Ouro
,
P.
,
Dene
,
P.
,
Novo
,
P. G.
,
Stallard
,
T.
,
Kyozuda
,
Y.
, and
Stansby
,
P.
,
2022
, “
Power Density Capacity of Tidal Stream Turbine Arrays With Horizontal and Vertical Axis Turbines
,”
J. Ocean Eng. Mar. Energy
,
9
(
2
), pp.
203
218
.
8.
Rasool
,
G.
, and
Stack
,
M. M.
,
2019
, “
Some Views on the Mapping of Erosion of Coated Composites in Tidal Turbine Simulated Conditions
,”
Tribol. Trans.
,
62
(
3
), pp.
512
523
.
9.
Hassan
,
E.
,
Zekos
,
I.
,
Jansson
,
P.
,
Pecur
,
T.
,
Floreani
,
C.
,
Robert
,
C.
,
Brádaigh
,
C.M.Ó.
, and
Stack
,
M. M.
,
2021
, “
Erosion Mapping of Through-Thickness Toughened Powder Epoxy Gradient Glass-Fiber-Reinforced Polymer (GFRP) Plates for Tidal Turbine Blades
,”
Lubricants
,
9
(
3
), p.
22
.
10.
Gao
,
Y.
,
Liu
,
H.
,
Lin
,
Y.
,
Gu
,
Y.
, and
Wang
,
S.
,
2022
, “
Numerical Investigation of the Erosion Behavior in Blades of Tidal Current Turbine
,”
J. Renewable Sustainable Energy
,
14
(
4
), p.
044502
.
11.
Zhang
,
J.
,
Han
,
Z.
,
Yin
,
W.
,
Wang
,
H.
,
Ge
,
C.
, and
Jiang
,
J.
,
2013
, “
Numerical Experiment of the Solid Particle Erosion of Bionic Configuration Blade of Centrifugal Fan
,”
Acta Metall. Sin.-Engl.
,
26
(
1
), pp.
16
24
.
12.
Alvarez-Antolin
,
F. A.
,
Segurado-Frutos
,
E. S.
,
González-Pociño
,
A. G.
,
Cofiño-Villar
,
A. C.
, and
Asensio-Lozano
,
J. A.
,
2019
, “
A Trade-Off Between Mechanical Strength and Erosive Wear Resistance in AlSi12CuMgNi Alloy Used to Manufacture Fan Blades for Underground Mines
,”
Metals
,
9
(
3
), p.
313
.
13.
Liu
,
Y.
,
Cui
,
X.
,
Fang
,
Y.
,
Wen
,
X.
,
Chen
,
H.
, and
Jin
,
G.
,
2022
, “
Research Progress on Erosion Damage and Protective Coating for Aircraft Engine
,”
China Surf. Eng.
,
35
(
3
), pp.
31
47
.
14.
Bai
,
X.
,
Yao
,
Y.
,
Han
,
Z.
,
Zhang
,
J.
, and
Zhang
,
S.
,
2020
, “
Study of Solid Particle Erosion on Helicopter Rotor Blades Surfaces
,”
Appl. Sci.
,
10
(
3
), p.
977
.
15.
Yao
,
Y.
,
Bai
,
X.
,
Liu
,
H.
,
Li
,
T.
,
Liu
,
J.
, and
Zhou
,
G.
,
2021
, “
Solid Particle Erosion Area of Rotor Blades: Application on Small-Size Unmanned Helicopters
,”
Symmetry
,
13
(
2
), p.
178
.
16.
Zhang
,
J.
,
Yi
,
H.
,
Huang
,
Z.
, and
Du
,
J.
,
2019
, “
Erosion Mechanism and Sensitivity Parameter Analysis of Natural Gas Curved Pipeline
,”
ASME J. Pressure Vessel. Technol.
,
141
(
3
), p.
034502
.
17.
Khan
,
R.
,
Ya
,
H. H.
,
Pao
,
W.
,
Bin Abdullah
,
M. Z.
, and
Dzubir
,
F. A.
,
2020
, “
Influence of Sand Fines Transport Velocity on Erosion-Corrosion Phenomena of Carbon Steel 90-Degree Elbow
,”
Metals
,
10
(
5
), p.
626
.
18.
Bilal
,
F. S.
,
Sedrez
,
T. A.
, and
Shirazi
,
S. A.
,
2021
, “
Experimental and CFD Investigations of 45 and 90 Degrees Bends and Various Elbow Curvature Radii Effects on Solid Particle Erosion
,”
Wear
,
476
, p.
203646
.
19.
Parkash
,
O.
,
Kumar
,
A.
, and
Sikarwar
,
B. S.
,
2021
, “
Computational Erosion Wear Model Validation of Particulate Flow Through Mitre Pipe Bend
,”
Arab. J. Sci. Eng.
,
46
(
12
), pp.
12373
12390
.
20.
Guo
,
X.
,
Nian
,
T.
, and
Stoesser
,
T.
,
2022
, “
Using Dimpled-Pipe Surface to Reduce Submarine Landslide Impact Forces on Pipelines at Different Span Heights
,”
Ocean Eng.
,
244
, p.
110343
.
21.
Mohr
,
H.
,
Draper
,
S.
,
Cheng
,
L.
, and
White
,
D. J.
,
2016
, “
Predicting the Rate of Scour Beneath Subsea Pipelines in Marine Sediments Under Steady Flow Conditions
,”
Coast. Eng.
,
110
, pp.
111
126
.
22.
Fredsøe
,
J.
,
2016
, “
Pipeline–Seabed Interaction
,”
J. Waterw. Port. Coast.
,
142
(
6
), p.
03116002
.
23.
Fan
,
H.
,
Wang
,
J.
,
Zhu
,
L.
,
Wang
,
N.
, and
Chen
,
H.
,
2021
, “
Experimental Study of Hydrodynamic and Self-Buried Behavior of Submarine Pipeline With Perpendicular Spoilers
,”
China Ocean Eng.
,
35
(
2
), pp.
250
261
.
24.
Novan
,
T.
, and
Taufiq
,
W.
,
2022
, “
Numerical Simulation of Early Stages of Scour Around a Submarine Pipeline Using a Two-Phase Flow Model
,”
Ocean Eng.
,
264
, p.
112503
.
25.
Shi
,
Y.
,
Yang
,
H.
,
Wei
,
J.
,
Yu
,
H.
,
Liu
,
Y.
,
Ge
,
S.
,
Bai
,
Z.
, and
Li
,
S.
,
2022
, “
Numerical Study of Scour Below Vibrating Pipelines Under Waves and Currents
,”
Ocean Eng.
,
266
(
1
), p.
112718
.
26.
Allen
,
Q.
, and
Raeymaekers
,
B.
,
2021
, “
Surface Texturing of Prosthetic Hip Implant Bearing Surfaces: A Review
,”
ASME J. Tribol.
,
143
(
4
), p.
040801
.
27.
Allen
,
Q.
, and
Raeymaekers
,
B.
,
2021
, “
The Effect of Texture Floor Profile on the Lubricant Film Thickness in a Textured Hard-On-Soft Bearing With Relevance to Prosthetic Hip Implants
,”
ASME J. Tribol.
,
143
(
2
), p.
021801
.
28.
Jin
,
X.
,
Li
,
X.
,
Liu
,
Y.
,
Gao
,
J.
, and
Bai
,
L.
,
2024
, “
Experimental Study of Lubricant Distribution and Lubrication Enhancement Induced by Ball Bearing Cage
,”
ASME J. Tribol.
,
146
(
7
), p.
074103
.
29.
Zhang
,
Y. H.
,
Huang
,
H.
, and
Ren
,
L. Q.
,
2014
, “
Erosion Wear Experiments and Simulation Analysis on Bionic Anti-Erosion Sample
,”
Sci. China Technol. Sci.
,
57
(
3
), pp.
646
650
.
30.
Yin
,
W.
,
Han
,
Z.
,
Feng
,
H.
,
Zhang
,
J.
,
Cao
,
H.
, and
Tian
,
Y.
,
2017
, “
Gas–Solid Erosive Wear of Biomimetic Pattern Surface Inspired From Plant
,”
Tribol. Trans.
,
60
(
1
), pp.
159
165
.
31.
Han
,
Z.
,
Zhu
,
B.
,
Yang
,
M.
,
Niu
,
S.
,
Song
,
H.
, and
Zhang
,
J.
,
2017
, “
The Effect of the Micro-Structures on the Scorpion Surface for Improving the Anti-Erosion Performance
,”
Surface Coat. Technol.
,
313
, pp.
143
150
.
32.
Tian
,
X. M.
,
Han
,
Z. W.
,
Li
,
X. J.
,
Pu
,
Z. G.
, and
Ren
,
L. Q.
,
2010
, “
Biological Coupling Anti-Wear Properties of Three Typical Molluscan Shells—Scapharca Subcrenata, Rapana Venosa and Acanthochiton Rubrolineatus
,”
Sci. China Technol. Sci.
,
53
(
11
), pp.
2905
2913
.
33.
Wang
,
H.
,
Xu
,
H.
,
Zhang
,
Y.
,
Chen
,
S.
,
Zhao
,
Z.
, and
Chen
,
J.
,
2019
, “
Design of a Bio-Inspired Anti-Erosion Structure for a Water Hydraulic Valve Core: An Experimental Study
,”
Biomimetics
,
4
(
3
), p.
63
.
34.
Zhang
,
S.
,
Zhang
,
J.
,
Zhu
,
B.
,
Niu
,
S.
,
Han
,
Z.
, and
Ren
,
L.
,
2020
, “
Progress in Bio-Inspired Anti-Solid Particle Erosion Materials: Learning From Nature But Going Beyond Nature
,”
China J. Mech. Eng.
,
33
(
18
), pp.
1516
1541
.
35.
Yu
,
H.
,
Shao
,
L.
,
Zhang
,
S.
,
Zhang
,
J.
, and
Han
,
Z.
,
2022
, “
An Innovative Strategy of Anti-Erosion: Combining Bionic Morphology and Bionic Arrangement
,”
Powder Technol.
,
407
, p.
117653
.
36.
Yu
,
H.
,
Shao
,
L.
,
Zhang
,
S.
,
Zhang
,
J.
, and
Han
,
Z.
,
2023
, “
A New Erosive Wear Resistance Strategy for Curved Surfaces Based on Combined Bionics
,”
Tribol. Int.
,
180
, p.
108226
.
37.
Yu
,
H.
,
Zhang
,
W.
,
Zhang
,
S.
,
Zhang
,
J.
, and
Han
,
Z.
,
2022
, “
Optimization of Hydrodynamic Properties of Structured Grinding Wheels Based on Combinatorial Bionics
,”
Tribol. Int.
,
173
, p.
107651
.
38.
Godin
,
C.
,
Golé
,
C.
, and
Douady
,
S.
,
2020
, “
Phyllotaxis as Geometric Canalization During Plant Development
,”
Development
,
147
(
19), p.
dev165878
.
39.
Vogel
,
H.
,
1979
, “
A Better Way to Construct the Sunflower Head
,”
Math. Biosci.
,
44
(
3–4
), pp.
179
189
.
40.
Iterson
,
G. V.
,
1907
, “
Mathematische und Mikroskopisch-Anatomische Studien über Blattstellungen
,”
Nature
,
77
(
1990
), pp.
145
146
.
41.
Yu
,
H.
,
Lyu
,
Y.
,
Wang
,
J.
, and
Wang
,
X.
,
2018
, “
A Biomimetic Engineered Grinding Wheel Inspired by Phyllotactic Theory
,”
J. Mater. Process. Technol.
,
251
, pp.
267
281
.
42.
Ma
,
Z.
,
Feng
,
Y.
,
Wei
,
Z.
,
Xie
,
D.
,
Dong
,
W.
,
Wang
,
N.
, and
Shi
,
B.
,
2022
, “
Influencing Factors of Collision Behavior Between Aluminum Particles and Wallin High-Temperature Gas
,”
J. Propuls. Technol.
,
43
(
11
), pp.
315
321
.
43.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.
44.
Zhang
,
J.
,
Chen
,
W.
,
Yang
,
M.
,
Chen
,
S.
,
Zhu
,
B.
,
Niu
,
S.
,
Han
,
Z.
, and
Wang
,
H.
,
2017
, “
The Ingenious Structure of Scorpion Armor Inspires Sand-Resistant Surfaces
,”
Tribol. Lett.
,
65
(
3
), p.
110
.
45.
Finnie
,
I.
,
Stevick
,
G. R.
, and
Ridgely
,
J. R.
,
1992
, “
The Influence of Impingement Angle on the Erosion of Ductile Metals by Angular Abrasive Particles
,”
Wear
,
152
(
1
), pp.
91
98
.
46.
Papini
,
M.
, and
Dhar
,
S.
,
2005
, “
Experimental Verification of a Model of Erosion Due to the Impact of Rigid Single Angular Particles on Fully Plastic Targets
,”
Int. J. Mech. Sci.
,
48
(
5
), pp.
469
482
.
47.
Uryukov
,
B. A.
, and
Tkachenko
,
G. V.
,
2011
, “
Semiempirical Erosion Model of Plastic Materials in a Stream of Solid Particles
,”
Powder Metall. Met. Ceramics
,
49
(
9–10
), pp.
581
587
.
48.
Anderson
,
K.
,
Karimi
,
S.
, and
Shirazi
,
S.
,
2021
, “
Erosion Testing and Modeling of Several Non-Metallic Materials
,”
Wear
,
477
, p.
203811
.
You do not currently have access to this content.