Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The study investigates the microstructural evolution and wear behavior of Al–12.6Si–0.25Fe–xMn alloys (x = 0, 1, 2, and 3 wt%) in dry sliding wear experiments. Manganese (Mn) considerably modifies the microstructure by modifying primary and eutectic silicon particles, changing Fe-rich intermetallic compounds, and increasing the overall wear resistance of Al–12.6Si–0.25Fe. The microstructural investigation demonstrates the production of Al15(Mn,Fe)3Si2 intermetallic phases, as well as a more uniform Si particle distribution. Wear experiments at varied loads (20 N, 40 N, and 60 N) show that Mn addition significantly reduces wear-rates and specific wear-rates, especially at lower loads. The findings highlight Mn's significance in increasing the hardness and wear resistance of Al–Si–Fe alloys, making them better suited to automotive applications.

References

1.
Li
,
H.
, and
Li
,
X.
,
2012
, “
The Present Situation and the Development Trend of New Materials Used in Automobile Lightweight
,”
Appl. Mech. Mater.
,
189
, pp.
58
62
.
2.
Biswas
,
P.
,
Das
,
S.
,
Das
,
S. C.
,
Paliwal
,
M.
,
Roy
,
H.
, and
Mondal
,
M. K.
,
2023
, “
Thermochemical Modelling and Mechanical Property of the Al–7.6Si–xZr Alloy
,”
Mater. Sci. Technol.
,
39
(
18
), pp.
3229
3243
.
3.
Schönemann
,
M.
,
Schmidt
,
C.
,
Herrmann
,
C.
, and
Thiede
,
S.
,
2016
, “
Multi-level Modeling and Simulation of Manufacturing Systems for Lightweight Automotive Components
,”
Procedia CIRP
,
41
, pp.
1049
1054
.
4.
Witik
,
R. A.
,
Payet
,
J.
,
Michaud
,
V.
,
Ludwig
,
C.
, and
Månson
,
J.-A. E.
,
2011
, “
Assessing the Life Cycle Costs and Environmental Performance of Lightweight Materials in Automobile Applications
,”
Composites Part A
,
42
(
11
), pp.
1694
1709
.
5.
Biswas
,
P.
, and
Mondal
,
M. K.
,
2023
, “
Evaluation of a Cast Al–Mg2Si Composite for Automobile Disk-Brake Rotor Application
,”
J. Mater. Eng. Perform.
, pp.
1
26
.
6.
Liu
,
Z.
,
Lu
,
J.
, and
Zhu
,
P.
,
2016
, “
Lightweight Design of Automotive Composite Bumper System Using Modified Particle Swarm Optimizer
,”
Compos. Struct.
,
140
, pp.
630
643
.
7.
Shaji
,
M. C.
,
Ravikumar
,
K. K.
,
Ravi
,
M.
, and
Sukumaran
,
K.
,
2013
, “Development of a High Strength Cast Aluminium Alloy for Possible Automotive Applications,”
Materials Science Forum
,
I.
Stone
,
B.
McKay
, and
Z. Y.
Yun
, eds., Vol. 765,
Trans Tech Publ
,
Switzerland
, pp.
54
58
.
8.
Zhang
,
M.
,
Tian
,
Y.
,
Zheng
,
X.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Wang
,
J.
,
2023
, “
Research Progress on Multi-component Alloying and Heat Treatment of High Strength and Toughness Al–Si–Cu–Mg Cast Aluminum Alloys
,”
Materials
,
16
(
3
), p.
1065
.
9.
Thasleem
,
P.
,
Kumar
,
D.
,
Joy
,
M. L.
, and
Kuriachen
,
B.
,
2022
, “
Effect of Heat Treatment and Electric Discharge Alloying on the Lubricated Tribology of Al–Si Alloy Fabricated by Selective Laser Melting
,”
Wear
,
494–495
, p.
204244
.
10.
Biswas
,
P.
,
Prasadu
,
K. D.
, and
Mondal
,
M. K.
,
2019
, “
Effect of Bi Addition on Microstructure and Mechanical Properties of Hypereutectic Al–17.6Si Alloy
,”
Mater. Res. Express
,
6
(
11
), p.
1165b9
.
11.
Haghayeghi
,
R.
, and
Timelli
,
G.
,
2021
, “
An Investigation on Primary Si Refinement by Sr and Sb Additions in a Hypereutectic Al–Si Alloy
,”
Mater. Lett.
,
283
, p.
128779
.
12.
Cheng
,
W.
,
Liu
,
C. Y.
, and
Ge
,
Z. J.
,
2021
, “
Optimizing the Mechanical Properties of Al–Si Alloys Through Friction Stir Processing and Rolling
,”
Mater. Sci. Eng. A
,
804
, p.
140786
.
13.
Damavandi
,
E.
,
Nourouzi
,
S.
,
Rabiee
,
S. M.
,
Jamaati
,
R.
,
Tiamiyu
,
A. A.
, and
Szpunar
,
J. A.
,
2020
, “
Effects of Prior ECAP Process on the Dynamic Impact Behaviors of Hypereutectic Al–Si Alloy
,”
Mater. Sci. Eng. A
,
793
, p.
139902
.
14.
Damavandi
,
E.
,
Nourouzi
,
S.
,
Rabiee
,
S. M.
,
Jamaati
,
R.
, and
Szpunar
,
J. A.
,
2021
, “
Effect of Route BC-ECAP on Microstructural Evolution and Mechanical Properties of Al–Si–Cu Alloy
,”
J. Mater. Sci.
,
56
, pp.
3535
3550
.
15.
Jin
,
S.
,
Luo
,
Z.
,
An
,
X.
,
Liao
,
X.
,
Li
,
J.
, and
Sha
,
G.
,
2021
, “
Composition-Dependent Dynamic Precipitation and Grain Refinement in Al–Si System Under High-Pressure Torsion
,”
J. Mater. Sci. Technol.
,
68
, pp.
199
208
.
16.
Xiao
,
T.
,
Lv
,
G.
,
Bao
,
Y.
,
Duo
,
W.
,
Xu
,
L.
, and
Ma
,
W.
,
2020
, “
Electromagnetic Separation of Coarse Al–Si Melts: The Migration Behavior of Iron-Rich Phase and Continuous Growth of Primary Silicon
,”
J. Alloys Compd.
,
819
, p.
153006
.
17.
Shehata
,
M. M.
,
El-Hadad
,
S.
,
Moussa
,
M. E.
, and
El-Shennawy
,
M.
,
2021
, “
Optimizing the Pouring Temperature for Semisolid Casting of a Hypereutectic Al–Si Alloy Using the Cooling Slope Plate Method
,”
Int. J. Metalcast.
,
15
, pp.
488
499
.
18.
Noga
,
P.
,
Skrzekut
,
T.
, and
Wędrychowicz
,
M.
,
2023
, “
Microstructure and Mechanical Properties of Al–Si Alloys Produced by Rapid Solidification and Hot Extrusion
,”
Materials
,
16
(
15
), p.
5223
.
19.
Wang
,
M.
,
Pang
,
J.
,
Liu
,
X.
,
Wang
,
J.
,
Liu
,
Y.
,
Li
,
S.
, and
Zhang
,
Z.
,
2022
, “
Optimization of Thermo-mechanical Fatigue Life for Eutectic Al–Si Alloy by the Ultrasonic Melt Treatment
,”
Materials
,
15
(
20
), p.
7113
.
20.
Li
,
Y.
,
Yang
,
M.
,
Li
,
K.
,
Ma
,
C.
,
Yang
,
T.
,
Wang
,
J.
,
Lu
,
Q.
,
Zhang
,
Y.
,
Li
,
G.
, and
Zhang
,
S.
,
2021
, “
In-Situ Study of Effects of Heat Treatments and Loading Methods on Fracture Behaviors of a Cast Al–Si Alloy
,”
Mater. Today Commun.
,
28
, p.
102680
.
21.
Gan
,
J.
,
Huang
,
Y.
,
Cheng
,
W. E. N.
, and
Jun
,
D. U.
,
2020
, “
Effect of Sr Modification on Microstructure and Thermal Conductivity of Hypoeutectic Al–Si Alloys
,”
Trans. Nonferrous Met. Soc. China
,
30
(
11
), pp.
2879
2890
.
22.
Zhang
,
L.
,
Ji
,
Z.
,
Zhao
,
J.
,
He
,
J.
, and
Jiang
,
H.
,
2022
, “
Factors Affecting Eutectic Si Modification in Al–Si Hypoeutectic Alloy With the Addition of Na, Sr, Eu and Yb
,”
Mater. Lett.
,
308
, p.
131206
.
23.
Basak
,
S.
,
Biswas
,
P.
,
Patra
,
S.
,
Roy
,
H.
, and
Mondal
,
M. K.
,
2021
, “
Effect of TiB2 and Al3Ti on the Microstructure, Mechanical Properties and Fracture Behaviour of Near Eutectic Al–12.6Si Alloy
,”
Int. J. Miner. Metall. Mater.
,
28
(
7
), pp.
1174
1185
.
24.
Biswas
,
P.
,
Patra
,
S.
, and
Kumar Mondal
,
M.
,
2020
, “
Structure–Property Correlation of Eutectic Al–12.4Si Alloys With and Without Zirconium (Zr) Addition
,”
Int. J. Cast Met. Res.
,
33
(
2–3
), pp.
134
145
.
25.
Li
,
Y.
,
Hu
,
B.
,
Liu
,
B.
,
Nie
,
A.
,
Gu
,
Q.
,
Wang
,
J.
, and
Li
,
Q.
,
2020
, “
Insight Into Si Poisoning on Grain Refinement of Al–Si/Al–5Ti–B System
,”
Acta Mater.
,
187
, pp.
51
65
.
26.
Birol
,
Y.
,
2012
, “
Effect of Silicon Content in Grain Refining Hypoeutectic Al–Si Foundry Alloys With Boron and Titanium Additions
,”
Mater. Sci. Technol.
,
28
(
4
), pp.
385
389
.
27.
Chen
,
Y.
,
Pan
,
Y.
,
Lu
,
T.
,
Tao
,
S.
, and
Wu
,
J.
,
2014
, “
Effects of Combinative Addition of Lanthanum and Boron on Grain Refinement of Al–Si Casting Alloys
,”
Mater. Des.
,
64
, pp.
423
426
.
28.
Zhao
,
C.
,
Li
,
Y.
,
Xu
,
J.
,
Luo
,
Q.
,
Jiang
,
Y.
,
Xiao
,
Q.
, and
Li
,
Q.
,
2021
, “
Enhanced Grain Refinement of Al–Si Alloys by Novel Al–V–B Refiners
,”
J. Mater. Sci. Technol.
,
94
, pp.
104
112
.
29.
Biswas
,
P.
,
Patra
,
S.
,
Roy
,
H.
,
Tiwary
,
C. S.
,
Paliwal
,
M.
, and
Mondal
,
M. K.
,
2021
, “
Effect of Mn Addition on the Mechanical Properties of Al–12.6Si Alloy: Role of Al15(MnFe)3Si2 Intermetallic and Microstructure Modification
,”
Met. Mater. Int.
,
27
(
6
), pp.
1713
1727
.
30.
Srirangam
,
P.
,
Kramer
,
M. J.
, and
Shankar
,
S.
,
2011
, “
Effect of Strontium on Liquid Structure of Al–Si Hypoeutectic Alloys Using High-Energy X-Ray Diffraction
,”
Acta Mater.
,
59
(
2
), pp.
503
513
.
31.
Fan
,
C.
,
Long
,
S.
,
Yang
,
H.
,
Wang
,
X.
, and
Zhang
,
J.
,
2013
, “
Influence of Ce and Mn Addition on α-Fe Morphology in Recycled Al–Si Alloy Ingots
,”
Int. J. Miner. Metall. Mater.
,
20
(
9
), pp.
890
895
.
32.
Alyaldin
,
L.
,
Abdelaziz
,
M. H.
,
Samuel
,
A. M.
,
Doty
,
H. W.
,
Valtierra
,
S.
, and
Samuel
,
F. H.
,
2018
, “
Effect of Ni and Mn Additions on the Ambient and High-Temperature Performance of Zr-Containing Al–Si–Cu–Mg-Based Alloys: Role of Precipitation Hardening
,”
Int. J. Met.
,
12
(
4
), pp.
825
838
.
33.
Li
,
L.
,
Zhao
,
Z.
,
Zuo
,
Y.
,
Zhu
,
Q.
, and
Cui
,
J.
,
2013
, “
Effect of a High Magnetic Field on the Morphological and Crystallographic Features of Primary Al6Mn Phase Formed During Solidification Process
,”
J. Mater. Res.
,
28
(
12
), pp.
1567
1573
.
34.
Shaha
,
S. K.
,
Czerwinski
,
F.
,
Kasprzak
,
W.
,
Friedman
,
J.
, and
Chen
,
D. L.
,
2016
, “
Effect of Mn and Heat Treatment on Improvements in Static Strength and Low-Cycle Fatigue Life of an Al–Si–Cu–Mg Alloy
,”
Mater. Sci. Eng. A
,
657
, pp.
441
452
.
35.
Min
,
K.-M.
,
Shin
,
J.-S.
, and
Kim
,
J.-M.
,
2023
, “
Effect of Mn Addition to Al–Si Alloy on the Layer Formed at the Interface With Cast Iron in Compound Casting
,”
Int. J. Met.
,
18
(
1
), pp.
242
250
.
36.
Khan
,
M. H.
,
Das
,
A.
,
Li
,
Z.
, and
Kotadia
,
H. R.
,
2021
, “
Effects of Fe, Mn, Chemical Grain Refinement and Cooling Rate on the Evolution of Fe Intermetallics in a Model 6082 Al-Alloy
,”
Intermetallics
,
132
, p.
107132
.
37.
Zou
,
J.
,
Zhang
,
H.
,
Yu
,
C.
,
Wu
,
Z.
,
Guo
,
C.
,
Nagaumi
,
H.
,
Zhu
,
K.
,
Li
,
B.
, and
Cui
,
J.
,
2023
, “
Investigating the Influences of Fe, Mn and Mo Additions on the Evolution of Microstructure and Mechanical Performances of Al–Si–Mg Cast Alloys
,”
J. Mater. Res. Technol.
,
25
, pp.
319
332
.
38.
Tai
,
C.-L.
,
Pua
,
Y.-M.
,
Chung
,
T.-F.
,
Yang
,
Y.-L.
,
Chen
,
H.-R.
,
Chen
,
C.-Y.
,
Wang
,
S.-H.
,
Yu
,
C.-Y.
, and
Yang
,
J.-R.
,
2023
, “
The Effect of Minor Addition of Mn in AA7075 Al–Zn–Mg–Cu Aluminum Alloys on Microstructural Evolution and Mechanical Properties in Warm Forming and Paint Baking Processes
,”
Int. J. Lightweight Mater. Manuf.
,
6
(
4
), pp.
521
533
.
39.
Gyarmati
,
G.
,
Bubonyi
,
T.
,
Fegyverneki
,
G.
,
Tokár
,
M.
, and
Mende
,
T.
,
2022
, “
Interactions of Primary Intermetallic Compound Particles and Double Oxide Films in Liquid Aluminum Alloys
,”
Intermetallics
,
149
, p.
107681
.
40.
Gyarmati
,
G.
,
Fegyverneki
,
G.
,
Kéri
,
Z.
,
Molnár
,
D.
,
Tokár
,
M.
,
Varga
,
L.
, and
Mende
,
T.
,
2021
, “
Controlled Precipitation of Intermetallic (Al,Si)3Ti Compound Particles on Double Oxide Films in Liquid Aluminum Alloys
,”
Mater. Charact.
,
181
, p.
111467
.
41.
Shabestari
,
S. G.
,
Mahmudi
,
M.
,
Emamy
,
M.
, and
Campbell
,
J.
,
2002
, “
Effect of Mn and Sr on Intermetallics in Fe-Rich Eutectic Al–Si Alloy
,”
Int. J. Cast Met. Res.
,
15
(
1
), pp.
17
24
.
42.
Akaberi
,
N.
,
Taghiabadi
,
R.
, and
Razaghian
,
A.
,
2017
, “
Effect of Bifilm Oxides on the Dry Sliding Wear Behavior of Fe-Rich Al–Si Alloys
,”
ASME J. Tribol.
,
139
(
5
), p.
051602
.
43.
Aranda
,
V.
,
Figueroa
,
I.
,
González
,
G.
,
García-Hinojosa
,
J.
, and
Lara-Rodríguez
,
G.
,
2019
, “
Effect of Small Additions of Cr, Ti, and Mn on the Microstructure and Hardness of Al–Si–Fe–X Alloys
,”
Metals
,
9
(
2
), p.
136
.
44.
Qiu
,
K.
,
Wang
,
R.
,
Peng
,
C.
,
Wang
,
N.
,
Cai
,
Z.
, and
Zhang
,
C.
,
2015
, “
Effect of Individual and Combined Additions of Al–5Ti–B, Mn and Sn on Sliding Wear Behavior of A356 Alloy
,”
Trans. Nonferrous Met. Soc. China
,
25
(
12
), pp.
3886
3892
.
45.
Ren
,
P.
,
Song
,
W.
,
Zhong
,
G.
,
Huang
,
W.
,
Zuo
,
Z.
,
Zhao
,
C.
, and
Yan
,
K.
,
2021
, “
High-Cycle Fatigue Failure Analysis of Cast Al–Si Alloy Engine Cylinder Head
,”
Eng. Fail. Anal.
,
127
, p.
105546
.
46.
Çetin
,
M.
,
2019
, “
Abrasive Wear Behaviour of Cast Al–Si–Mn Alloys
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
233
(
4
), pp.
908
918
.
47.
Bidmeshki
,
C.
,
Abouei
,
V.
,
Saghafian
,
H.
,
Shabestari
,
S. G.
, and
Noghani
,
M. T.
,
2016
, “
Effect of Mn Addition on Fe-Rich Intermetallics Morphology and Dry Sliding Wear Investigation of Hypereutectic Al–17.5%Si Alloys
,”
J. Mater. Res. Technol.
,
5
(
3
), pp.
250
258
.
48.
Pouladvand
,
S.
,
Taghiabadi
,
R.
, and
Shahriyari
,
F.
,
2018
, “
Investigation of the Tribological Properties of AlxSi–1.2Fe(Mn) (x = 5–13
Wt%) Alloys
,”
J. Mater. Eng. Perform.
,
27
(
7
), pp.
3323
3334
.
49.
Bhandari
,
R.
,
Biswas
,
P.
,
Mallik
,
M.
, and
Mondal
,
M. K.
,
2023
, “
High Temperature and Lubricating Wear Behaviour of In-Situ Al–20Mg2Si Composite
,”
Int. J. Metalcast.
,
18
(
3
), pp.
2225
2253
.
50.
Biswas
,
P.
, and
Mondal
,
M. K.
,
2024
, “
Dry Sliding Wear Behaviour of Al–7.6Si–xZr Alloys: Understanding the Impact of Zr on Wear Characteristics, Mechanics, and Transition
,”
Int. J. Metalcast.
, pp.
1
26
.
51.
Průša
,
F.
,
Bláhová
,
M.
,
Vojtěch
,
D.
,
Kučera
,
V.
,
Bernatiková
,
A.
,
Kubatík
,
T.
, and
Michalcová
,
A.
,
2016
, “
High-Strength Ultra-Fine-Grained Hypereutectic Al–Si–Fe–X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering
,”
Materials
,
9
(
12
), p.
973
.
52.
Lin
,
C.
,
Wu
,
S.
,
,
S.
,
An
,
P.
, and
Wan
,
L.
,
2013
, “
Effects of Ultrasonic Vibration and Manganese on Microstructure and Mechanical Properties of Hypereutectic AleSi Alloys With 2%Fe
,”
Intermetallics
,
32
, pp.
176
183
.
53.
Pan
,
S.
,
Qian
,
F.
,
Li
,
C.
,
Wang
,
Z.
, and
Li
,
Y.
,
2021
, “
Synergistic Strengthening by Nano-sized α-Al(Mn,Fe)Si and Al3Zr Dispersoids in a Heat-Resistant Al–Mn–Fe–Si–Zr Alloy
,”
Mater. Sci. Eng. A
,
819
, p.
141460
.
54.
Pan
,
Q.
,
Kapoor
,
M.
,
Mileski
,
S.
,
Li
,
D.
,
Yang
,
J.
,
Zheng
,
Y.
,
Carsley
,
J.
, and
Lou
,
X.
,
2023
, “
Phase Transformation and Microstructural Evolution in Al–Mn–Fe–Si 3104 Aluminum Alloy Made by Laser Directed Energy Deposition
,”
Addit. Manuf.
,
77
, p.
103797
.
55.
Saghafian
,
H.
,
Shabestari
,
S. G.
,
Ghadami
,
S.
, and
Ghoncheh
,
M. H.
,
2017
, “
Effects of Iron, Manganese, and Cooling Rate on Microstructure and Dry Sliding Wear Behavior of LM13 Aluminum Alloy
,”
Tribol. Trans.
,
60
(
5
), pp.
888
901
.
56.
Shehata
,
M. M.
,
El-Hadad
,
S.
,
Moussa
,
M. E.
, and
El-Shennawy
,
M.
,
2021
, “
The Combined Effect of Cooling Slope Plate Casting and Mold Vibration on Microstructure, Hardness and Wear Behavior of Al–Si Alloy (A390)
,”
Int. J. Met.
,
15
(
3
), pp.
763
779
.
57.
Singh
,
R. K.
,
Telang
,
A.
, and
Das
,
S.
,
2022
, “
The Influence of Abrasive Size and Applied Load on Abrasive Wear of Al–Si–SiCp Composite
,”
Arab. J. Sci. Eng.
,
47
(
7
), pp.
8617
8628
.
58.
Sumalatha
,
C.
,
Rao
,
P. V. C. S.
,
Rao
,
V. V. S.
, and
Deepak
,
M. S. K.
,
2022
, “
Influence of Grain Refiner, Modifier and Graphene on the Dry Sliding Wear of Hypereutectic Al–Si Alloys
,”
Metallogr. Microstruct. Anal.
,
11
(
2
), pp.
234
244
.
59.
Tan
,
H.
,
Sun
,
Q.
,
Chen
,
W.
,
Zhu
,
S.
,
Cheng
,
J.
, and
Yang
,
J.
,
2021
, “
Tribological Performance and Wear Mechanisms of a High-Temperature Wear-Resistant Al–Si/SiAlON Composite
,”
Tribol. Int.
,
164
, p.
107227
.
60.
Charandabi
,
F. K.
,
Jafarian
,
H. R.
,
Mahdavi
,
S.
,
Javaheri
,
V.
, and
Heidarzadeh
,
A.
,
2021
, “
Modification of Microstructure, Hardness, and Wear Characteristics of an Automotive-Grade Al–Si Alloy After Friction Stir Processing
,”
J. Adhes. Sci. Technol.
,
35
(
23
), pp.
2696
2709
.
61.
Cug
,
H.
, and
Ahlatci
,
H.
,
2017
, “
Effect of Zn and Mn Additions on the Wear Resistance of Cast Alloy Mg–5%Al–1%Si
,”
Met. Sci. Heat Treat.
,
59
(
3–4
), pp.
161
167
.
62.
Lin
,
C.
,
Wu
,
S.
,
,
S.
,
Zeng
,
J.
, and
An
,
P.
,
2016
, “
Dry Sliding Wear Behavior of Rheocast Hypereutectic Al–Si Alloys With Different Fe Contents
,”
Trans. Nonferrous Met. Soc. China
,
26
(
3
), pp.
665
675
.
63.
Mirzaee-Moghadam
,
M.
,
Lashgari
,
H. R.
,
Zangeneh
,
S.
,
Rasaee
,
S.
,
Seyfor
,
M.
,
Asnavandi
,
M.
, and
Mojtahedi
,
M.
,
2022
, “
Dry Sliding Wear Characteristics, Corrosion Behavior, and Hot Deformation Properties of Eutectic Al–Si Piston Alloy Containing Ni-Rich Intermetallic Compounds
,”
Mater. Chem. Phys.
,
279
, p.
125758
.
64.
Biswas
,
P.
,
Mondal
,
M. K.
, and
Mandal
,
D.
,
2019
, “
Effect of Mg2Si Concentration on the Dry Sliding Wear Behavior of Al–Mg2Si Composite
,”
ASME J. Tribol.
,
141
(
8
), p.
081601
.
You do not currently have access to this content.