Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this investigation, Al7075 aluminum alloy reinforced with Si3N4 particles (3, 6, 9, and 12 wt%) was used as reinforcements to manufacture composites through a stir-casting approach. The microstructural characteristics have shown significant grain refinement owing to the presence of Si3N4 particle distribution during the solidification. SEM micrographs confirm the uniform distribution of Si3N4 particles with considerably fewer particle agglomerations throughout the matrix alloy. The reinforcement particle cluster formation is relatively increased for increasing the Si3N4 content. The SEM and EDS analyses showed good integrity at the matrix–refinement interface with no interfacial compound formation. The mechanical properties, such as hardness (up to 118 BHN), tensile strength (up to 281 MPa), and yield strength (up to 178 MPa), were enhanced by 30.69% and 20.27%, respectively. The wear-rate and coefficient of friction of the composites were evaluated with increasing percentages of Si3N4 content. The average wear-rate of the composites is 0.019, 0.0085, 0.0075, and 0.0065 mm3/m, respectively, for the increased Si3N4 ceramic particulate content from 3 to 12 wt%, while the average COF of the composites is 0.45, 0.37, 0.32 and 0.28 respectively. With the addition of Si3N4 particulate content, the wear resistance performance of the composites at 30 N has shown up to 46% enhancement and increased from 0.0052 to 0.0103 mm3/m with the increasing sliding velocity from 1.5 to 3.5 m/s for varying Si3N4 particulate content from 3 to 12 wt%, while reducing the COF up to 65%, and from 0.43 to 0.27. Different wear mechanisms are characterized by identifying the typical features of wear on the SEM micrographs of the worn surfaces. The dominant wear mechanisms of the composites are typically observed as abrasion, oxidation, delamination and melt wear. The mechanism and behavior of composites under dry sliding conditions are analyzed through the construction of wear maps. The windows of wear mechanisms and progression in terms of load and sliding velocity for the composites with various wt% of Si3N4 content were identified, analyzed, and presented.

References

1.
Kumar
,
J.
,
Singh
,
D.
,
Kalsi
,
N. S.
,
Sharma
,
S.
,
Pruncu
,
C. I.
,
Pimenov
,
D. Y.
,
Rao
,
K. V.
, and
Kapłonek
,
W.
,
2020
, “
Comparative Study on the Mechanical, Tribological, Morphological and Structural Properties of Vortex Casting Processed, Al–SiC–Cr Hybrid Metal Matrix Composites for High Strength Wear-Resistant Applications: Fabrication and Characterizations
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
13607
13615
.
2.
El-Kady
,
O.
, and
Fathy
,
A.
,
2014
, “
Effect of SiC Particle Size on the Physical and Mechanical Properties of Extruded Al Matrix Nanocomposites
,”
Mater. Des.
,
54
, pp.
348
353
.
3.
Kim
,
H. H.
,
Babu
,
J. S. S.
, and
Kang
,
C. G.
,
2013
, “
Fabrication of A356 Aluminum Alloy Matrix Composite With CNTs/Al2O3 Hybrid Reinforcements
,”
Mater. Sci. Eng. A
,
573
, pp.
92
99
.
4.
Joshua
,
K. J.
,
Vijay
,
S. J.
, and
Selvaraj
,
D. P.
,
2018
, “
Effect of Nano TiO2 Particles on Microhardness and Microstructural Behavior of AA7068 Metal Matrix Composites
,”
Ceram. Int
,
44
(
17
), pp.
20774
20781
.
5.
Chen
,
X.
,
Huang
,
G. S.
,
Liu
,
S. S.
,
Han
,
T. Z.
,
Jiang
,
B.
,
Tang
,
A. T.
,
Pan
,
F.
, and
Zhu
,
Y.
,
2019
, “
Grain Refinement and Mechanical Properties of Pure Aluminum Processed by Accumulative Extrusion Bonding
,”
Trans. Nonferrous Met. Soc. China
,
29
(
3
), pp.
437
447
.
6.
Baradeswaran
,
A.
, and
Perumal
,
A. E.
,
2014
, “
Study on Mechanical and Wear Properties of Al 7075/Al2O3/Graphite Hybrid Composites
,”
Composites, Part B
,
56
, pp.
464
471
.
7.
Azimi
,
A.
,
Shokuhfar
,
A.
, and
Nejadseyfi
,
O.
,
2015
, “
Mechanically Alloyed Al7075–TiC Nanocomposite: Powder Processing, Consolidation and Mechanical Strength
,”
Mater. Des.
,
66
, pp.
137
141
.
8.
Lal
,
S.
,
Kumar
,
S.
,
Khan
,
Z. A.
, and
Siddiquee
,
A. N.
,
2015
, “
Multi-Response Optimization of Wire Electrical Discharge Machining Process Parameters for Al7075/Al2O3/SiC Hybrid Composite Using Taguchi-Based Grey Relational Analysis
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
229
(
2
), pp.
229
237
.
9.
Ibrahim
,
M. F.
,
Ammar
,
H. R.
,
Samuel
,
A. M.
,
Soliman
,
M. S.
, and
Samuel
,
F. H.
,
2015
, “
On the Impact Toughness of Al-15 vol% B4C Metal Matrix Composites
,”
Composites, Part B
,
79
, pp.
83
94
.
10.
Deaquino-Lara
,
R.
,
Soltani
,
N.
,
Bahrami
,
A.
,
Gutiérrez-Castañeda
,
E.
,
García-Sánchez
,
E.
, and
Hernandez-Rodríguez
,
M. A. L.
,
2015
, “
Tribological Characterization of Al7075–Graphite Composites Fabricated by Mechanical Alloying and Hot Extrusion
,”
Mater. Des.
,
67
, pp.
224
231
.
11.
Dobrzański
,
L. A.
,
Włodarczyk
,
A.
, and
Adamiak
,
M.
,
2006
, “
The Structure and Properties of PM Composite Materials Based on EN AW-2124 Aluminum Alloy Reinforced With the BN or Al2O3 Ceramic Particles
,”
J. Mater. Process. Technol.
,
175
(
1–3
), pp.
186
191
.
12.
Kar
,
C.
, and
Surekha
,
B.
,
2021
, “
Characterisation of Aluminum Metal Matrix Composites Reinforced With Titanium Carbide and Red Mud
,”
Mater. Res. Innovations
,
25
(
2
), pp.
67
75
.
13.
Paul
,
R. C.
,
Joseph
,
R.
,
Nadana Kumar
,
V.
,
Booma Devi
,
P.
, and
Manigandan
,
S.
,
2022
, “
Experimental Analysis of Hybrid Metal Matrix Composite Reinforced With Al2O3 and Graphite
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
648
652
.
14.
Lin
,
F.
,
Wang
,
J.
,
Wu
,
H.
,
Jia
,
F.
,
Lu
,
Y.
,
Ren
,
M.
,
Yang
,
M.
,
Chen
,
Z.
, and
Jiang
,
Z.
,
2021
, “
Synergistic Effects of TiC and Graphene on the Microstructure and Tribological Properties of Al2024 Matrix Composites
,”
Adv. Powder Technol.
,
32
(
10
), pp.
3635
3649
.
15.
Vithal
,
N. D.
,
Krishna
,
B. B.
, and
Krishna
,
M. G.
,
2021
, “
Impact of Dry Sliding Wear Parameters on the Wear Rate of A7075 Based Composites Reinforced With ZrB2 Particulates
,”
J. Mater. Res. Technol.
,
14
, pp.
174
185
.
16.
Zhou
,
J.
,
Lu
,
M.
,
Lin
,
J.
, and
Du
,
Y.
,
2021
, “
Elliptic Vibration Assisted Cutting of Metal Matrix Composite Reinforced by Silicon Carbide: an Investigation of Machining Mechanisms and Surface Integrity
,”
J. Mater. Res. Technol.
,
15
, pp.
1115
1129
.
17.
Kumar
,
M. S.
,
Vasumathi
,
M.
,
Begum
,
S. R.
,
Luminita
,
S. M.
,
Vlase
,
S.
, and
Pruncu
,
C. I.
,
2021
, “
Influence of B4C and Industrial Waste Fly Ash Reinforcement Particles on the Micro Structural Characteristics and Mechanical Behavior of Aluminum (Al–Mg–Si-T6) Hybrid Metal Matrix Composite
,”
J. Mater. Res. Technol.
,
15
, pp.
1201
1216
.
18.
Dwivedi
,
S. P.
,
2020
, “
Effect of Ball-Milled MgO and Si3N4 Addition on the Physical, Mechanical and Thermal Behaviour of Aluminum Based Composite Developed by Hybrid Casting Technique
,”
Int. J. Cast Met. Res.
,
33
(
1
), pp.
35
49
.
19.
Boppana
,
S. B.
,
Dayanand
,
S.
,
Anil Kumar
,
M. R.
,
Kumar
,
V.
, and
Aravinda
,
T.
,
2020
, “
Synthesis and Characterization of Nano Graphene and ZrO2 Reinforced Al 6061 Metal Matrix Composites
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
7354
7362
.
20.
Patel
,
S. K.
,
Singh
,
V. P.
,
Kumar
,
N.
,
Kuriachen
,
B.
, and
Nateriya
,
R.
,
2020
, “
Wear Behaviour of Al-Silicon (LM13) Alloy Composite Reinforcement With TiC and ZrSiO4 Particles
,”
Silicon
,
12
(
1
), pp.
211
221
.
21.
Dayanand
,
S.
,
Boppana
,
S. B.
,
Auradi
,
V.
,
Nagaral
,
M.
,
Udaya Ravi
,
M.
, and
Bharath
,
2021
, “
Evaluation of Wear Properties of Heat-Treated Al-AlB 2 In-Situ Metal Matrix Composites
,”
J. Bio- Tribo-Corros.
,
7
(
2
), pp.
1
11
.
22.
Steinman
,
A. E.
,
Corthay
,
S.
,
Firestein
,
K. L.
,
Kvashnin
,
D. G.
,
Kovalskii
,
A. M.
,
Matveev
,
A. T.
,
Sorokin
,
P. B.
,
Golberg
,
D. V.
, and
Shtansky
,
D. V.
,
2018
, “
AL-Based Composites Reinforced With AlB2, AlN and BN Phases: Experimental and Theoretical Studies
,”
Mater. Des.
,
141
, pp.
88
98
.
23.
Konopatsky
,
A. S.
,
Kvashnin
,
D. G.
,
Corthay
,
S.
,
Boyarintsev
,
I.
,
Firestein
,
K. L.
,
Orekhov
,
A.
,
Arkharova
,
N.
,
Golberg
,
D. V.
, and
Shtansky
,
D. V.
,
2021
, “
Microstructure Evolution During AlSi10Mg Molten Alloy/BN Microflake Interactions in Metal Matrix Composites Obtained Through 3D Printing
,”
J. Alloys Compd.
,
859
, p.
157765
.
24.
Sureshkumar
,
P.
, and
Uvaraja
,
V. C.
,
2018
, “
Effect of Ceramic and Metallic Reinforcement on Mechanical, Corrosion, and Tribological Behavior of Aluminum Composite by Adopting Design of Experiment Through Taguchi Technique
,”
ASME J. Tribol.
,
140
(
5
), p.
052301
.
25.
Subburaj
,
A.
,
Antony Joseph Decruz
,
A. M. M.
,
Chandra Moorthy
,
V. A.
, and
Durairaj
,
R.
,
2022
, “
Mechanical Characterization and Micro-Structural Analysis on AA2024 Hybrid Composites Reinforced With WC and Graphene Nanoparticles
,”
Trans. Indian Inst. Met.
,
75
(
7
), pp.
1721
1730
.
26.
Khanna
,
V.
,
Kumar
,
V.
, and
Bansal
,
S. A.
,
2021
, “
Mechanical Properties of Aluminum-Graphene/Carbon Nanotubes (CNTs) Metal Matrix Composites: Advancement, Opportunities and Perspective
,”
Mater. Res. Bull.
,
138
, p.
111224
.
27.
Kanth
,
U. R.
,
Rao
,
P. S.
, and
Krishna
,
M. G.
,
2019
, “
Mechanical Behaviour of Fly Ash/SiC Particles Reinforced Al-Zn Alloy-Based Metal Matrix Composites Fabricated by Stir Casting Method
,”
J. Mater. Res. Technol.
,
8
(
1
), pp.
737
744
.
28.
Prakash
,
C.
,
Senthil
,
P.
,
Manikandan
,
N.
, and
Palanisamy
,
D.
,
2022
, “
Investigations and Regression Modeling on Mechanical Characterization of Cast Aluminum Alloy Based (LM 26 + Graphite+ Fly Ash) Hybrid Metal Matrix Composites
,”
Int. J. Interact. Des. Manuf.
,
16
, pp.
1
6
.
29.
Wang
,
L. R. W. L.
,
Snidle
,
R. W.
, and
Gu
,
L.
,
2000
, “
Rolling Contact Silicon Nitride Bearing Technology: A Review of Recent Research
,”
Wear
,
246
(
1–2
), pp.
159
173
.
30.
Ye
,
C. C.
,
Ru
,
H. Q.
,
Qin
,
Z. B.
,
Zhao
,
S. W.
,
Jia
,
H. S.
, and
Chen
,
D. L.
,
2020
, “
Silicon Nitride Composites With Magnesia and Alumina Additives: Toughening Mechanisms and Mechanical Properties
,”
Mater. Sci. Eng. A
,
779
, p.
139140
.
31.
Han
,
I. S.
,
Seo
,
D. W.
,
Kim
,
S. Y.
,
Hong
,
K. S.
,
Guahk
,
K. H.
, and
Lee
,
K. S.
,
2008
, “
Properties of Silicon Nitride for Aluminum Melts Prepared by Nitrided Pressureless Sintering
,”
J. Eur. Ceram. Soc.
,
28
(
5
), pp.
1057
1063
.
32.
Yang
,
X.
,
Barekar
,
N. S.
,
Ji
,
S.
,
Dhindaw
,
B. K.
, and
Fan
,
Z.
,
2020
, “
Influence of Reinforcing Particle Distribution on the Casting Characteristics of Al-SiCp Composites
,”
J. Mater. Process. Technol.
,
279
, p.
116580
.
33.
Kok
,
M.
,
2005
, “
‘Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminum Alloy Composites
,”
J. Mater. Process. Technol.
,
161
(
3
), pp.
381
387
.
34.
Sharma
,
P.
,
Sharma
,
S.
, and
Khanduja
,
D.
,
2015
, “
Production and Some Properties of Si3N4 Reinforced Aluminum Alloy Composites
,”
J. Asian Ceram. Soc.
,
3
(
3
), pp.
352
359
.
35.
Ul Haq
,
M. I.
, and
Anand
,
A.
,
2018
, “
Dry Sliding Friction and Wear Behavior of AA7075-Si3N4 Composite
,”
Silicon
,
10
(
5
), pp.
1819
1829
.
36.
Sharma
,
P.
,
Sharma
,
S.
, and
Khanduja
,
D.
,
2015
, “
Parametric Study of Dry Sliding Wear Behavior of Hybrid Metal Matrix Composite Produced by a Novel Process
,”
Metall. Mater. Trans. A
,
46
(
7
), pp.
3260
3270
.
37.
Ramesh
,
C. S.
,
Keshavamurthy
,
R.
,
Channabasappa
,
B. H.
, and
Ahmed
,
A.
,
2009
, “
Microstructure and Mechanical Properties of Ni–P Coated Si3N4 Reinforced Al6061 Composites
,”
Mater. Sci. Eng. A
,
502
(
1–2
), pp.
99
106
.
38.
Rao
,
T. B.
,
2018
, “
An Experimental Investigation on Mechanical and Wear Properties of Al7075/SiCp Composites: Effect of SiC Content and Particle Size
,”
ASME J. Tribol.
,
140
(
3
), p.
031601
.
39.
Rao
,
J. K.
,
Madhusudhan
,
R.
, and
Rao
,
T. B.
,
2022
, “
Recent Progress in Stir Cast Aluminum Matrix Hybrid Composites: Overview on Processing, Mechanical and Tribological Characteristics, and Strengthening Mechanisms
,”
J. Bio- Tribo-Corros.
,
8
(
3
), p.
74
.
40.
Soltani
,
S.
,
Azari Khosroshahi
,
R.
,
Taherzadeh Mousavian
,
R.
,
Jiang
,
Z. Y.
,
Fadavi Boostani
,
A.
, and
Brabazon
,
D.
,
2017
, “
Stir Casting Process for Manufacture of Al–SiC Composites
,”
Rare Met.
,
36
(
7
), pp.
581
590
.
41.
Moses
,
J. J.
,
Dinaharan
,
I.
, and
Sekhar
,
S. J.
,
2016
, “
Prediction of Influence of Process Parameters on Tensile Strength of AA6061/TiC Aluminum Matrix Composites Produced Using Stir Casting
,”
Trans. Nonferrous Met. Soc. China
,
26
(
6
), pp.
1498
1511
.
42.
Sardar
,
S.
,
Kumar Karmakar
,
S.
, and
Das
,
D.
,
2018
, “
Tribological Properties of Al 7075 Alloy and 7075/Al2O3 Composite Under Two-Body Abrasion: A Statistical Approach
,”
ASME J. Tribol.
,
140
(
5
), p.
051602
.
43.
Karbalaei Akbari
,
M.
,
Baharvandi
,
H. R.
, and
Shirvanimoghaddam
,
K.
,
2015
, “
Tensile and Fracture Behavior of Nano/Micro TiB2 Particle Reinforced Casting A356 Aluminum Alloy Composites
,”
Mater. Des.
,
66
, pp.
150
161
.
44.
Bhuvaneswari
,
V.
,
Rajeshkumar
,
L.
, and
Nimel Sworna Ross Ross
,
K.
,
2021
, “
Influence of Bioceramic Reinforcement on Tribological Behaviour of Aluminum Alloy Metal Matrix Composites: Experimental Study and Analysis
,”
J. Mater. Res. Technol.
,
15
, pp.
2802
2819
.
45.
Hillary
,
J. J. M.
,
Ramamoorthi
,
R.
,
Joseph
,
J. D. J.
, and
Samuel
,
C. S. J.
,
2020
, “
A Study on Microstructural Effect and Mechanical Behaviour of Al6061–5% SiC–TiB2 Particulates Reinforced Hybrid Metal Matrix Composites
,”
J. Compos. Mater.
,
54
(
17
), pp.
2327
2337
.
46.
Wang
,
J. T.
,
Xie
,
L.
,
Wang
,
Z. G.
,
Gu
,
H.
,
Luo
,
K. Y.
,
Lu
,
Y. L.
,
He
,
M. T.
, and
Ge
,
M. Z.
,
2020
, “
Influence of Laser Shock Peening on the Coefficient of Thermal Expansion of Al (7075)-Based Hybrid Composites
,”
J. Alloys Compd.
,
844
, p.
156088
.
47.
Anbuchezhiyan
,
G.
,
Mohan
,
B.
,
Senthilkumar
,
N.
, and
Pugazhenthi
,
R.
,
2021
, “
Synthesis and Characterization of Silicon Nitride Reinforced Al–Mg–Zn Alloy Composites
,”
Met. Mater. Int.
,
27
(
8
), pp.
3058
3069
.
48.
Wang
,
X. J.
,
Hu
,
X. S.
,
Nie
,
K. B.
,
Deng
,
K. K.
,
Wu
,
K.
, and
Zheng
,
M. Y.
,
2012
, “
Dynamic Recrystallization Behavior of Particle Reinforced Mg Matrix Composites Fabricated by Stir Casting
,”
Mater. Sci. Eng. A
,
545
, pp.
38
43
.
49.
Hemanth
,
J.
,
2009
, “
Development and Property Evaluation of Aluminum Alloy Reinforced With Nano-ZrO2 Metal Matrix Composites (NMMCs)
,”
Mater. Sci. Eng. A
,
507
(
1–2
), pp.
110
113
.
50.
Kumar
,
V. N.
,
Kishore Nath
,
N.
, and
Ramesh Babu
,
P.
,
2022
, “
Effect of Reinforcement and Fabrication of Al6061 Nanosilica Composite Prepared Using Single-and Two-Step Methods
,”
Adv. Mater. Process. Technol.
,
8
(
1
), pp.
478
497
.
51.
Ahamad
,
N.
,
Mohammad
,
A.
,
Sadasivuni
,
K. K.
, and
Gupta
,
P.
,
2021
, “
Wear, Optimization and Surface Analysis of Al-Al2O3-TiO2 Hybrid Metal Matrix Composites
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
1
), pp.
93
102
.
52.
Pazhouhanfar
,
Y.
, and
Eghbali
,
B.
,
2018
, “
Microstructural Characterization and Mechanical Properties of TiB2 Reinforced Al6061 Matrix Composites Produced Using Stir Casting Process
,”
Mater. Sci. Eng. A
,
710
, pp.
172
180
.
53.
Verma
,
A. S.
,
Cheema
,
M. S.
,
Kant
,
S.
, and
Suri
,
N. M.
,
2019
, “
Porosity Study of Developed Al–Mg–Si/Bauxite Residue Metal Matrix Composite Using Advanced Stir Casting Process
,”
Arabian J. Sci. Eng.
,
44
(
2
), pp.
1543
1552
.
54.
Mohanavel
,
V.
,
Ali
,
K. A.
,
Prasath
,
S.
,
Sathish
,
T.
, and
Ravichandran
,
M.
,
2020
, “
Microstructural and Tribological Characteristics of AA6351/Si3N4 Composites Manufactured by Stir Casting
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
14662
14672
.
55.
Ahmad
,
Z.
,
Khan
,
S.
, and
Hasan
,
S.
,
2020
, “
Microstructural Characterization and Evaluation of Mechanical Properties of Silicon Nitride Reinforced LM 25 Composite
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
9129
9135
.
56.
Acilar
,
M.
, and
Gul
,
F.
,
2004
, “
Effect of the Applied Load, Sliding Distance and Oxidation on the dry Sliding Wear Behaviour of Al–10Si/SiCp Composites Produced by Vacuum Infiltration Technique
,”
Mater. Des.
,
25
(
3
), pp.
209
217
.
57.
Kumar
,
J. K.
,
Rao
,
T. B.
, and
Krishna
,
K. R.
,
2023
, “
The Microstructural Properties and Tribological Performance of Al2O3 and TiN Nanoparticles Reinforced Ti–6Al–4 V Composite Coating Deposited on AISI304 Steel by TIG Cladding
,”
ASME J. Tribol.
,
145
(
1
), p.
011401
.
58.
Rao
,
T. B.
,
2021
, “
Microstructural, Mechanical, and Wear Properties Characterization and Strengthening Mechanisms of Al7075/SiCnp Composites Processed Through Ultrasonic Cavitation Assisted Stir-Casting
,”
Mater. Sci. Eng. A
,
805
, p.
140553
.
59.
Baradeswaran
,
A.
, and
Perumal
,
A. E.
,
2014
, “
Wear and Mechanical Characteristics of Al 7075/Graphite Composites
,”
Compositds,. Part B
,
56
, pp.
472
476
.
60.
Samal
,
P.
,
Surekha
,
B.
, and
Vundavilli
,
P. R.
,
2022
, “
Experimental Investigations on Microstructure, Mechanical Behavior and Tribological Analysis of AA5154/SiC Composites by Stir Casting
,”
Silicon
,
14
(
7
), pp.
3317
3328
.
61.
Tjong
,
S. C.
, and
Lau
,
K. C.
,
1999
, “
Sliding Wear of Stainless Steel Matrix Composite Reinforced With TiB2 Particles
,”
Mater. Lett.
,
41
(
4
), pp.
153
158
.
62.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2021
, “
Triboinformatic Modeling of Dry Friction and Wear of Aluminum Base Alloys Using Machine Learning Algorithms
,”
Tribol. Int.
,
161
, p.
107065
.
63.
Mistry
,
J. M.
, and
Gohil
,
P. P.
,
2019
, “
Experimental Investigations on Wear and Friction Behaviour of Si3N4p Reinforced Heat-Treated Aluminum Matrix Composites Produced Using Electromagnetic Stir Casting Process
,”
Composites, Part B
,
161
, pp.
190
204
.
64.
Prakash
,
K. S.
,
Kanagaraj
,
A.
, and
Gopal
,
P. M.
,
2015
, “
Dry Sliding Wear Characterization of Al 6061/Rock Dust Composite
,”
Trans. Nonferrous Met. Soc. China
,
25
(
12
), pp.
3893
3903
.
65.
Srivyas
,
P. D.
, and
Charoo
,
M. S.
,
2020
, “
Friction and Wear Characterization of Spark Plasma Sintered Hybrid Aluminum Composite Under Different Sliding Conditions
,”
ASME J. Tribol.
,
142
(
12
), p.
121701
.
66.
Surya
,
M. S.
, and
Gugulothu
,
S. K.
,
2022
, “
Fabrication, Mechanical and Wear Characterization of Silicon Carbide Reinforced Aluminum 7075 Metal Matrix Composite
,”
Silicon
,
14
(
5
), pp.
2023
2032
.
67.
Ramesh
,
C. S.
, and
Ahamed
,
A.
,
2011
, “
Friction and Wear Behaviour of Cast Al 6063 Based In Situ Metal Matrix Composites
,”
Wear
,
271
(
9–10
), pp.
1928
1939
.
68.
Huang
,
P. C.
,
Hou
,
K. H.
,
Hong
,
J. J.
,
Lin
,
M. H.
, and
Wang
,
G. L.
,
2021
, “
Study of Fabrication and Wear Properties of Ni–SiC Composite Coatings on A356 Aluminum Alloy
,”
Wear
,
477
, p.
203772
.
69.
Bandil
,
K.
,
Vashisth
,
H.
,
Kumar
,
S.
,
Verma
,
L.
,
Jamwal
,
A.
,
Kumar
,
D.
,
Singh
,
N.
,
Sadasivuni
,
K. K.
, and
Gupta
,
P.
,
2019
, “
Microstructural, Mechanical and Corrosion Behaviour of Al–Si Alloy Reinforced With SiC Metal Matrix Composite
,”
J. Compos. Mater.
,
53
(
28–30
), pp.
4215
4223
.
70.
Stanev
,
L.
,
Kolev
,
M.
, and
Drenchev
,
L.
,
2021
, “
Enhanced Tribological Properties of an Advanced Al–Al2O3 Composite Infiltrated With a Tin-Based Alloy
,”
ASME J. Tribol.
,
143
(
6
), p.
064502
.
71.
Bhowmik
,
A.
,
Dey
,
S.
,
Dey
,
D.
, and
Biswas
,
A.
,
2021
, “
Dry Sliding Wear Performance of Al7075/SiC Composites by Applying Grey-Fuzzy Approach
,”
Silicon
,
13
(
10
), pp.
3665
3680
.
72.
Wu
,
L.
,
Zhao
,
Z.
,
Bai
,
P.
,
Zhao
,
W.
,
Li
,
Y.
,
Liang
,
M.
,
Liao
,
H.
,
Huo
,
P.
, and
Li
,
J.
,
2020
, “
Wear Resistance of Graphene Nano-Platelets (GNPs) Reinforced AlSi10Mg Matrix Composite Prepared by SLM
,”
Appl. Surf. Sci.
,
503
, p.
144156
.
73.
Ravikiran
,
A.
, and
Surappa
,
M. K.
,
1997
, “
Effect of Sliding Speed on Wear Behaviour of A356 Al-30 wt% SiCp MMC
,”
Wear
,
206
(
1–2
), pp.
33
38
.
74.
Joseph
,
J. D.
,
Kumaragurubaran
,
B.
, and
Sathish
,
S.
,
2020
, “
Effect of MoS2 on the Wear Behavior of Aluminum (AlMg0. 5Si) Composite
,”
Silicon
,
12
(
6
), pp.
1481
1489
.
75.
Dhanalakshmi
,
S.
,
ShanmugaSundaram
,
K.
,
Tamilarasan
,
T. R.
, and
Rajendran
,
R.
,
2021
, “
The Role of Ceramic Particle Loading and the Influence of hot Extrusion on the Tribological Behaviour of Aluminum Alloy-SiCp Composites
,”
J. Compos. Mater.
,
55
(
5
), pp.
687
701
.
76.
Gokhale
,
A.
,
Jain
,
J.
,
Prasad
,
R.
,
Huang
,
E. W.
, and
Lee
,
S. Y.
,
2020
, “
Characterization of Deformation and Wear Mechanisms During Indentation Scratching on Pure Zinc
,”
ASME J. Tribol.
,
142
(
1
), p.
011701
.
77.
Meher
,
A.
,
Mahapatra
,
M. M.
,
Samal
,
P.
, and
Vundavilli
,
P. R.
,
2021
, “
Abrasive Wear Behaviour of TiB2 Reinforced In-Situ Synthesized Magnesium RZ5 Alloy Based Metal Matrix Composites
,”
Met. Mater. Int.
,
27
(
9
), pp.
3652
3665
.
78.
Zhang
,
Z. F.
,
Zhang
,
L. C.
, and
Mai
,
Y. W.
,
1995
, “
Wear of Ceramic Particle-Reinforced Metal-Matrix Composites: Part II A Model of Adhesive Wear
,”
J. Mater. Sci.
,
30
(
8
), pp.
1967
1971
.
79.
Sahoo
,
B. N.
, and
Panigrahi
,
S. K.
,
2019
, “
Development of Wear Maps of in-Situ TiC+ TiB2 Reinforced AZ91 Mg Matrix Composite With Varying Microstructural Conditions
,”
Tribiol. Int.
,
135
, pp.
463
477
.
You do not currently have access to this content.