Graphical Abstract Figure

Design, testing, and simulation of a point contact tribometer for MR fluid

Graphical Abstract Figure

Design, testing, and simulation of a point contact tribometer for MR fluid

Close modal

Abstract

Understanding magnetorheological (MR) fluids' tribological behavior is essential for various applications, especially under variable magnetic fields. Therefore, this work is concerned with designing a ball on the three-plate tribometer with an electromagnet to measure the tribological properties of MR fluid under variable magnetic fields. The magnetic field simulation has been conducted using comsol multiphysics software and the results have been compared with the experimental values obtained through a 3D Gauss meter. The experiment is performed to find the effect of load, speed, and magnetic field on the coefficient of friction, and it has been found that changes in load and magnetic field greatly influence the coefficient of friction. The numerical simulation of magnetohydrodynamic for point contact has been conducted using the finite volume method and the effect of the Hartmann number on the film thickness and pressure distribution has been discussed. The increase in the Hartmann number improves the lubrication for the point contact.

References

1.
Park
,
B. J.
,
Fang
,
F. F.
, and
Choi
,
H. J.
,
2010
, “
Magnetorheology: Materials and Application
,”
Soft Matter
,
6
(
21
), pp.
5246
5253
.
2.
Bossis
,
G.
,
Volkova
,
O.
,
Lacis
,
S.
, and
Meunier
,
A.
,
2002
, “Magnetorheology: Fluids, Structures, and Rheology,”
Ferrofluids: Magnetically Controllable Fluids and Their Applications
,
S.
Odenbach
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
202
230
.
3.
Rankin
,
P. J.
,
Ginder
,
J. M.
, and
Klingenberg
,
D. J.
,
1998
, “
Electro-and Magneto-Rheology
,”
Curr. Opin. Colloid Interface Sci.
,
3
(
4
), pp.
373
381
.
4.
Carlson
,
J. D.
,
2005
, “
MR Fluids and Devices in the Real World
,”
Int. J. Mod. Phys. B
,
19
(
07n09
), pp.
1463
1470
.
5.
Liu
,
J.
,
2009
, “
Analysis of a Porous Elastic Sheet Damper With a Magnetic Fluid
,”
ASME J. Tribol.
,
131
(
2
), p.
021801
.
6.
Chen
,
Y.
,
Yang
,
L.
,
Yao
,
Y.
,
Li
,
D.
,
Jiang
,
Y.
,
Lv
,
L.
,
Yao
,
J.
, et al
,
2024
, “
Experiment and Simulation on the Ferrofluid Boundary Deformation and Fluctuation Characters of a High-Speed Rotary Seal
,”
ASME J. Tribol.
,
146
(
6
), p.
064402
.
7.
Nie
,
M.
,
Cao
,
J.
,
Li
,
J.
, and
Maohui
,
F.
,
2019
, “
Magnet Arrangements in a Magnetic Field Generator for Magnetorheological Finishing
,”
Int. J. Mech. Sci.
,
161
, p.
105018
.
8.
Jha
,
S.
,
2015
, “
Design of Parallel Plate Magnetorheometer for Evaluating Properties of Magnetorheological Polishing Fluid
,”
Mater. Today: Proc.
,
2
(
4–5
), pp.
3251
3259
.
9.
Maurya
,
C. S.
, and
Sarkar
,
C.
,
2020
, “
Magnetic and Transient Temperature Field Simulation of Plate–Plate Magnetorheometer Using Finite-Element Method
,”
IEEE Trans. Magn.
,
56
(
4
), pp.
1
9
.
10.
Singh
,
B. K.
, and
Sarkar
,
C.
,
2024
, “
Design, Development, and Performance Analysis of Plate-Plate Hybrid Magneto Rheometer Considering Uniform Radial Magnetic Flux
,”
J. Magn. Magn. Mater.
,
590
, p.
171691
.
11.
Hu
,
Z. D.
,
Yan
,
H.
,
Qiu
,
H. Z.
,
Zhang
,
P.
, and
Liu
,
Q.
,
2012
, “
Friction and Wear of Magnetorheological Fluid Under Magnetic Field
,”
Wear
,
278
, pp.
48
52
.
12.
Rosa
,
W. O.
,
Vereda
,
F.
, and
Vicente
,
J. D.
,
2019
, “
Tribological Behavior of Glycerol/Water-Based Magnetorheological Fluids in PMMA Point Contacts
,”
Front. Mater.
,
6
, p.
32
.
13.
Zhang
,
P.
,
Lee
,
K. H.
, and
Lee
,
C. H.
,
2018
, “
Wear Behavior of Rotary Lip Seal Operating in a Magnetorheological Fluid Under Magnetic Field Conditions
,”
ASME J. Tribol.
,
140
(
2
), p.
022201
.
14.
Thakur
,
M. K.
, and
Sarkar
,
C.
,
2021
, “
Thermal and Tribological Performance of Graphite Flake-Based Magnetorheological Fluid Under Shear Mode Clutch
,”
ASME J. Tribol.
,
143
(
12
), p.
121806
.
15.
Zhang
,
K.
,
Liu
,
K.
,
Sun
,
D.
,
Gao
,
T.
, and
Ye
,
J.
,
2024
, “
Friction Variability in Slip Rings: Geometry and Stiffness Effects
,”
ASME J. Tribol.
,
146
(
10
), p.
101702
.
16.
Dowson
,
D.
, and
Higginson
,
G. R.
,
2006
, “
Reflections on Early Studies of Elasto-Hydrodynamic Lubrication
,”
IUTAM Symposium on Elastohydrodynamics and Micro-Elastohydrodynamics: Proceedings of the IUTAM Symposium
,
Cardiff, UK
,
Sept. 1–3, 2004
,
Springer
,
The Netherlands
, pp.
3
21
.
17.
Roberts
,
W. H.
,
1981
, “
Tribology in Nuclear Power Generation
,”
Tribol. Int.
,
14
(
1
), pp.
17
28
.
18.
Lin
,
J. R.
,
Chu
,
L. M.
,
Hung
,
C. R.
, and
Wang
,
P. Y.
,
2013
, “
Derivation of Two-Dimensional Couple-Stress Hydromagnetic Squeeze Film Reynolds Equation and Application to Wide Parallel Rectangular Plates
,”
Meccanica
,
48
(
1
), pp.
253
258
.
19.
Lin
,
J. R.
,
2010
, “
MHD Steady and Dynamic Characteristics of Wide Tapered-Land Slider Bearings
,”
Tribol. Int.
,
43
(
12
), pp.
2378
2383
.
20.
Elco
,
R. A.
, and
Hughes
,
W. F.
,
1962
, “
Magnetohydrodynamic Pressurization of Liquid Metal Bearings
,”
Wear
,
5
(
3
), pp.
198
212
.
21.
Chou
,
T. L.
,
Lai
,
J. W.
, and
Lin
,
J. R.
,
2003
, “
Magneto-Hydrodynamic Squeeze Film Characteristics Between a Sphere and a Plane Surface
,”
J. Mar. Sci. Technol.
,
11
(
3
), p.
6
.
22.
Hamza
,
E. A.
,
1991
, “
The Magnetohydrodynamic Effects on a Fluid Film Squeezed Between Two Rotating Surfaces
,”
J. Phys. D: Appl. Phys.
,
24
(
4
), p.
547
554
.
23.
Jadhav
,
S.
,
Thakre
,
G. D.
, and
Sharma
,
S. C.
,
2019
, “
Influence of MHD Lubrication and Textured Surface in EHL Line Contact
,”
Front. Mech. Eng.
,
5
, p.
33
.
24.
Tian
,
T. F.
,
Li
,
W. H.
,
Alici
,
G.
,
Du
,
H.
, and
Deng
,
Y. M.
,
2011
, “
Microstructure and Magnetorheology of Graphite-Based MR Elastomers
,”
Rheol. Acta
,
50
(
9–10
), pp.
825
836
.
25.
Kumbhar
,
B. K.
,
Patil
,
S. R.
, and
Sawant
,
S. M.
,
2015
, “
Synthesis and Characterization of Magneto-Rheological (MR) Fluids for MR Brake Application
,”
Eng. Sci. Technol. Int. J.
,
18
(
3
), pp.
432
438
.
26.
Thakur
,
M. K.
, and
Sarkar
,
C.
,
2022
, “
Lubrication Performance of Magnetorheological Fluid in Shear Mode Magnetorheological Clutch With and Without Groove
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
236
(
2
), pp.
338
355
.
27.
Lee
,
C. H.
,
Lee
,
D. W.
,
Choi
,
J. Y.
,
Choi
,
S. B.
,
Cho
,
W. O.
, and
Yun
,
H. C.
,
2011
, “
Tribological Characteristics Modification of Magnetorheological Fluid
,”
ASME J. Tribol.
,
133
(
3
), p.
031801
.
28.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
, eds,
2000
,
Multi-level Methods in Lubrication
, Vol.
37
,
Elsevier
,
New York
.
29.
Woloszynski
,
T.
,
Podsiadlo
,
P.
, and
Stachowiak
,
G. W.
,
2015
, “
Efficient Solution to the Cavitation Problem in Hydrodynamic Lubrication
,”
Tribol. Lett.
,
58
(
1
), pp.
1
11
.
30.
Bertocchi
,
L.
,
Dini
,
D.
,
Giacopini
,
M.
,
Fowell
,
M. T.
, and
Baldini
,
A.
,
2013
, “
Fluid Film Lubrication in the Presence of Cavitation: A Mass-Conserving Two-Dimensional Formulation for Compressible, Piezo Viscous and Non-Newtonian Fluids
,”
Tribol. Int.
,
67
, pp.
61
71
.
31.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
Boca Raton, FL
.
32.
Hansen
,
E.
,
Kacan
,
A.
,
Frohnapfel
,
B.
, and
Codrignani
,
A.
,
2022
, “
An EHL Extension of the Unsteady FBNS Algorithm
,”
Tribol. Lett.
,
70
(
3
), p.
80
.
33.
Wang
,
Y.
,
Liu
,
Y.
, and
Wang
,
Y.
,
2019
, “
A Method for Improving the Capability of Convergence of Numerical Lubrication Simulation by Using the PID Controller
,”
Advances in Mechanism and Machine Science: Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science
,
Krakow, Poland
,
July 15–18
, Vol.
15
,
Springer International Publishing
, pp.
3845
3854
.
34.
Habchi
,
W.
,
Demirci
,
I.
,
Eyheramendy
,
D.
,
Morales-Espejel
,
G.
, and
Vergne
,
P.
,
2007
, “
A Finite Element Approach of Thin Film Lubrication in Circular EHD Contacts
,”
Tribol. Int.
,
40
(
10–12
), pp.
1466
1473
.
You do not currently have access to this content.