Graphical Abstract Figure

Excellent tribological performance of new microemulsion cutting fluid: Integrated analysis via tribological testing (a), machining testing (b) and tribological results (c)

Graphical Abstract Figure

Excellent tribological performance of new microemulsion cutting fluid: Integrated analysis via tribological testing (a), machining testing (b) and tribological results (c)

Close modal

Abstract

To address friction and wear issues in machining AISI 1045 steel, a novel oil-in-water microemulsion cutting fluid was developed using white oil, water, and eco-friendly additives (tricarboxylic acid and tall oil fatty acid amide). Tribological and lathe cutting experiments systematically evaluated its lubrication performance. The results show that the cutting fluid has a uniform and stable oil-in-water microemulsion structure, which is capable of forming a stable lubrication film. The dilution concentration had a significant effect on the lubricating properties of the cutting fluids, with the optimal lubrication achieved at the concentration of 10 wt%. At this concentration, more multilayer chemical lubrication films with low shear stress are formed. The load has the least impact on the friction coefficient, indicating that the cutting fluid can maintain stable lubrication even under high-pressure conditions. In practical machining, the cutting force is mainly affected by the feed rate and back engagement, while the surface roughness is mainly affected by the back engagement. This study provides a new option for reducing frictional wear during the machining of AISI 1045.

References

1.
Cao
,
J.
,
Chang
,
C.
,
Qiu
,
Z.
,
Zeng
,
D.
,
Liu
,
M.
, and
Yan
,
X.
,
2023
, “
Interface Characteristics and Tribological Properties of Laser Cladding FeCoCrNiAl0.5Ti0.5 Coating on AISI 1045 Steel
,”
China Surf. Eng.
,
36
, pp.
54
64
(in Chinese with English Abstract). 2
2.
Li
,
J.
,
Cao
,
Z.
,
Liu
,
L.
,
Liu
,
X.
, and
Peng
,
J.
,
2021
, “
Effect of Microstructure on Hardness and Wear Properties of 45 Steel After Induction Hardening
,”
Steel Res. Int.
,
92
(
4
), p.
2000540
.
3.
Wang
,
Q.
,
Liu
,
X.
,
Liu
,
Q.
,
Wang
,
G.
,
Zhang
,
S.
, and
Zhang
,
L.
,
2022
, “
Microstructure Evolution and Tribological Properties of Laser Cladding Ni60/Cu Self-Llubricating Composite Coatings on 45# Steel
,”
China Surf. Eng.
,
35
, pp.
232
243
(in Chinese with English Abstract).
4.
Gao
,
T.
,
Li
,
C.
,
Yang
,
M.
,
Zhang
,
Y.
,
Jia
,
D.
,
Ding
,
W.
,
Debnath
,
S.
,
Yu
,
T.
,
Said
,
Z.
, and
Wang
,
J.
,
2021
, “
Mechanics Analysis and Predictive Force Models for the Single-Diamond Grain Grinding of Carbon Fiber Reinforced Polymers Using CNT Nano-lubricant
,”
J. Mater. Process. Technol.
,
290
, p.
116976
.
5.
Wang
,
J.
,
Zhuang
,
W.
,
Liang
,
W.
,
Yan
,
T.
,
Li
,
T.
,
Zhang
,
L.
, and
Li
,
S.
,
2021
, “
Inorganic Nanomaterial Lubricant Additives for Base Fluids, to Improve Tribological Performance: Recent Developments
,”
Friction
,
10
(
5
), pp.
645
676
.
6.
Yu
,
H.
,
Han
,
Z.
,
Zhang
,
J.
, and
Zhang
,
S.
,
2021
, “
Bionic Design of Tools in Cutting: Reducing Adhesion, Abrasion or Friction
,”
Wear
,
482–483
, p.
203955
.
7.
Liu
,
G.
,
Huang
,
C.
,
Zhao
,
B.
,
Wang
,
W.
, and
Sun
,
S.
,
2021
, “
Effect of Machined Surface Integrity on Fatigue Performance of Metal Workpiece: A Review
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
16
.
8.
Rosenkranz
,
A.
,
Costa
,
H. L.
,
Baykara
,
M. Z.
, and
Martini
,
A.
,
2021
, “
Synergetic Effects of Surface Texturing and Solid Lubricants to Tailor Friction and Wear—A Review
,”
Tribol. Int.
,
155
, p.
106792
.
9.
Debnath
,
S.
,
Reddy
,
M. M.
, and
Yi
,
Q. S.
,
2016
, “
Influence of Cutting Fluid Conditions and Cutting Parameters on Surface Roughness and Tool Wear in Turning Process Using Taguchi Method
,”
Measurement
,
78
, pp.
111
119
.
10.
Wickramasinghe
,
K. C.
,
Sasahara
,
H.
,
Rahim
,
E. A.
, and
Perera
,
G. I. P.
,
2020
, “
Green Metalworking Fluids for Sustainable Machining Applications: A Review
,”
J. Clean. Prod.
,
257
, p.
120552
.
11.
Dong
,
R.
,
Yu
,
Q.
,
Bai
,
Y.
,
Wu
,
Y.
,
Ma
,
Z.
,
Zhang
,
J.
,
Zhang
,
C.
, et al
,
2020
, “
Towards Superior Lubricity and Anticorrosion Performances of Proton-Type Ionic Liquids Additives for Water-Based Lubricating Fluids
,”
Chem. Eng. J.
,
383
, p.
123201
.
12.
Luo
,
X.
,
Wu
,
S.
,
Wang
,
D.
,
Yun
,
Y.
,
An
,
Q.
, and
Li
,
C.
,
2024
, “
Sustainable Development of Cutting Fluids: The Comprehensive Review of Vegetable Oil
,”
J. Clean. Prod.
,
473
, p.
143544
.
13.
Ni
,
J.
,
Feng
,
K.
,
He
,
L.
,
Liu
,
X.
, and
Meng
,
Z.
,
2019
, “
Assessment of Water-Based Cutting Fluids With Green Additives in Broaching
,”
Friction
,
8
(
6
), pp.
1051
1062
.
14.
Tang
,
L.
,
Zhang
,
Y.
,
Li
,
C.
,
Zhou
,
Z.
,
Nie
,
X.
,
Chen
,
Y.
,
Cao
,
H.
, et al
,
2022
, “
Biological Stability of Water-Based Cutting Fluids: Progress and Application
,”
Chin. J. Mech. Eng.
,
35
(
1
), pp.
1
14
.
15.
Srikant
,
R. R.
, and
Ramana
,
V. S. N. V.
,
2015
, “
Performance Evaluation of Vegetable Emulsifier Based Green Cutting Fluid in Turning of American Iron and Steel Institute (AISI) 1040 Steel—An Initiative Towards Sustainable Manufacturing
,”
J. Clean. Prod.
,
108
, pp.
104
109
.
16.
Dantas
,
T. N. d. C.
,
da Silva
,
D. N. N.
,
Dantas Neto
,
A. A.
,
Cabral
,
T. J. d. O.
, and
dos Anjos
,
A. S. D.
,
2019
, “
Treatment of Drill Cuttings Using Microemulsion
,”
J. Pet. Explor. Prod. Technol.
,
10
(
3
), pp.
1243
1251
.
17.
Sousa
,
R. P. F. d.
,
Braga
,
G. S.
,
Silva
,
R. R. d.
,
Leal
,
G. L. R.
,
Freitas
,
J. C. O.
,
Madera
,
V. S.
,
Garnica
,
A. I. C.
, and
Curbelo
,
F. D. S.
,
2021
, “
Formulation and Study of an Environmentally Friendly Microemulsion-Based Drilling Fluid (O/W) With Pine Oil
,”
Energies
,
14
(
23
), p.
7981
.
18.
Liu
,
H.
,
Lyu
,
J.
,
Liu
,
B.
,
Lian
,
M.
,
Li
,
T.
, and
Wang
,
Y.
,
2021
, “
Coupling Characteristics Analysis of Micro-Emulsion Cutting Fluid for Thickness On-Machine Measurement Using Ultrasonic
,”
Ultrasonics
,
115
, p.
106469
.
19.
Lodhi
,
A. P. S.
,
Kumar
,
D.
, and
Ghosh
,
S.
,
2023
, “
Performance Evaluation of Newly Developed Environmentally Friendly Metalworking Fluids During Grinding
,”
Biomass Convers. Biorefinery
,
15
(
2
), pp.
2933
2947
.
20.
Samuel
,
J.
,
Rafiee
,
J.
,
Dhiman
,
P.
,
Yu
,
Z. Z.
, and
Koratkar
,
N.
,
2011
, “
Graphene Colloidal Suspensions as High Performance Semi-synthetic Metal-Working Fluids
,”
J. Phys. Chem. C
,
115
(
8
), pp.
3410
3415
.
21.
Bhaumik
,
S.
,
Paleu
,
V.
,
Sharma
,
S.
,
Dwivedi
,
S.
,
Borkar
,
S.
, and
Kamaraj
,
M.
,
2020
, “
Nano and Micro Additivated Glycerol as a Promising Alternative to Existing Non-Biodegradable and Skin Unfriendly Synthetic Cutting Fluids
,”
J. Clean. Prod.
,
263
, p.
121383
.
22.
Bambam
,
A. K.
, and
Gajrani
,
K. K.
,
2024
, “
In Pursuit of Sustainability in Machining Titanium Alloys Using Phosphonium-Based Halogen-Free Ionic Liquids as Potential Metalworking Fluid Additives
,”
Tribol. Int.
,
199
, p.
109995
.
23.
Yao
,
C.
,
Chen
,
D.
,
Xu
,
K.
,
Zheng
,
Z.
,
Wang
,
Q.
, and
Liu
,
Y.
,
2021
, “
Study on Nano Silicon Carbide Water-Based Cutting Fluid in Polysilicon Cutting
,”
Mater. Sci. Semicond. Process.
,
123
, p.
105512
.
24.
Gu
,
Y.
,
Zhao
,
X.
,
Liu
,
Y.
, and
Lv
,
Y.
,
2014
, “
Preparation and Tribological Properties of Dual-Coated TiO2 Nanoparticles as Water-Based Lubricant Additives
,”
J. Nanomater.
,
2014
, pp.
1
8
.
25.
Khanna
,
N.
,
Shah
,
P.
,
Sarikaya
,
M.
, and
Pusavec
,
F.
,
2022
, “
Energy Consumption and Ecological Analysis of Sustainable and Conventional Cutting Fluid Strategies in Machining 15–5 PHSS
,”
Sustain. Mater. Technol.
,
32
, p.
e00416
.
26.
Li
,
B.
, and
Rui
,
Z.
,
2019
, “
Friction and Wear Behaviours of YG8 Sliding Against Austempered Ductile Iron Under Dry, Chilled Air and Minimal Quantity Lubrication Conditions
,”
Adv. Mech. Eng.
,
11
(
5
), pp.
1
11
.
27.
Kamyab
,
B.
,
Wang
,
H.
,
Xu
,
C.
,
Chambers
,
D. W.
, and
Bassi
,
A. S.
,
2024
, “
Preparing Vegetable Oils-Based Metalworking Fluids by a Hydrolysis-Esterification Two-Step Process
,”
Biomass Bioenergy
,
183
, p.
107175
.
28.
Suzuki
,
K.
,
Kobayashi
,
Y.
,
Yamazaki
,
T.
,
Tsuji
,
T.
, and
Arai
,
N.
,
2024
, “
Mechanisms Underlying the Stability and Instability of Concentrated Oil-in-Water Emulsions: Effect of the Chemical Structure of Amphiphilic Polymers
,”
J. Mol. Liq.
,
394
, p.
123749
.
29.
Ouyang
,
T.
,
Shen
,
Y.
,
Yang
,
R.
,
Liang
,
L.
,
Liang
,
H.
,
Lin
,
B.
,
Tian
,
Z. Q.
, and
Shen
,
P. K.
,
2020
, “
3D Hierarchical Porous Graphene Nanosheets as an Efficient Grease Additive to Reduce Wear and Friction Under Heavy-Load Conditions
,”
Tribol. Int.
,
144
, p.
106118
.
30.
Lawal
,
S. A.
,
2013
,
Effect of Vegetable and Mineral Oil-in-Water Emulsion Cutting Fluids in Turning AISI 4340 Steel With Coated Carbide Tools
,
University of Malaya (Malaysia)
.
31.
Achanta
,
S.
, and
Celis
,
J. P.
,
2010
, “
On the Scale Dependence of Coefficient of Friction in Unlubricated Sliding Contacts
,”
Wear
,
269
(
5–6
), pp.
435
442
.
32.
Xu
,
H.
,
Wang
,
Y.
,
Peng
,
R.
,
Jiang
,
J.
,
Zhang
,
K.
, and
Wu
,
P.
,
2021
, “
Synthesis of Micro-Mesoporous Ti-MOR/Silica Composite Spheres in Oil-in-Water Microemulsion System
,”
Chem. Res. Chin. Univ.
,
38
(
1
), pp.
192
199
.
33.
Ardila
,
M. A. N.
,
Costa
,
H. L.
, and
de Mello
,
J. D. B.
,
2020
, “
Influence of the Ball Material on Friction and Wear in Microabrasion Tests
,”
Wear
,
450–451
, p.
203266
.
34.
Ling
,
L.
,
Luo
,
L.
, and
Liu
,
F.
,
2021
, “
Effects of Grinding Treatment on Surface Properties and Deformation Microstructure in Alloy 304L
,”
Surf. Coat. Technol.
,
408
, p.
126850
.
35.
Zhang
,
W.
,
Zhang
,
S.
,
Dai
,
W.
,
Wang
,
X.
, and
Liu
,
B.
,
2021
, “
Erosion Wear Characteristics of Cemented Carbide for Mud Pulser Rotor
,”
Int. J. Refract. Met. Hard Mater.
,
101
, p.
105666
.
36.
Cai
,
M.
,
Yu
,
Q.
,
Liu
,
W.
, and
Zhou
,
F.
,
2020
, “
Ionic Liquid Lubricants: When Chemistry Meets Tribology
,”
Chem. Soc. Rev.
,
49
(
21
), pp.
7753
7818
.
37.
Li
,
W.
,
Zhang
,
L.-C.
,
Wu
,
C.-H.
,
Cui
,
Z.-X.
,
Niu
,
C.
, and
Wang
,
Y.
,
2022
, “
Debris Effect on the Surface Wear and Damage Evolution of Counterpart Materials Subjected to Contact Sliding
,”
Adv. Manuf.
,
10
(
1
), pp.
72
86
.
38.
Song
,
S.
,
Rao
,
R.
,
Yang
,
H.
,
Liu
,
H.
, and
Zhang
,
A. J. N.
,
2010
, “
Facile Synthesis of Fe3O4/MWCNTs by Spontaneous Redox and Their Catalytic Performance
,”
Nanotechnology
,
21
(
18
), p.
185602
.
39.
Yan
,
Z.
,
Zhao
,
Q.
,
Han
,
C.
,
Mei
,
X.
,
Liu
,
C.
, and
Jiang
,
M.
,
2024
, “
Effects of Iron Oxide on Crystallization Behavior and Spatial Distribution of Spinel in Stainless Steel Slag
,”
Int. J. Miner. Metall. Mater.
,
31
(
2
), pp.
292
300
.
40.
Thampi
,
A. D.
,
Prasanth
,
M. A.
,
Anandu
,
A. P.
,
Sneha
,
E.
,
Sasidharan
,
B.
, and
Rani
,
S.
,
2021
, “
The Effect of Nanoparticle Additives on the Tribological Properties of Various Lubricating Oils—Review
,”
Mater. Today: Proc.
,
47
, pp.
4919
4924
.
41.
Majeed
,
F. S. A.
,
Bin Mohd Yusof
,
N.
,
Azlan Suhaimi
,
M.
,
Mejid Elsiti
,
N.
, and
Norbiha bt A. Aziz
,
S.
,
2020
, “
Effect of Paraffin Oil With XGnP and Fe2O3 Nanoparticles on Tribological Properties
,”
Mater. Today: Proc.
,
27
, pp.
1685
1688
.
42.
Xiang
,
L.
,
Gao
,
C.
,
Wang
,
Y.
,
Pan
,
Z.
, and
Hu
,
D.
,
2014
, “
Tribological and Tribochemical Properties of Magnetite Nanoflakes as Additives in Oil Lubricants
,”
Particuology
,
17
, pp.
136
144
.
43.
Wang
,
X.
, and
Ye
,
X.
,
2024
, “
Effect of Morphology on Tribological Properties of Fe3O4 as Lubricant Additive: Nanospheres, Nanowires and Nanosheets
,”
Tribol. Int.
,
191
, p.
109201
.
44.
Ballarini
,
N.
,
Cavani
,
F.
,
Cimini
,
M.
,
Trifiro
,
F.
,
Millet
,
J.
,
Cornaro
,
U.
, and
Catani
,
R.
,
2006
, “
Role of Nb in Rutile-Type Cr/V/Sb/Nb Mixed Oxides, Catalysts for Propane Ammoxidation to Acrylonitrile
,”
J. Catal.
,
241
(
2
), pp.
255
267
.
45.
Kuntoglu
,
M.
,
Aslan
,
A.
,
Pimenov
,
D. Y.
,
Giasin
,
K.
,
Mikolajczyk
,
T.
, and
Sharma
,
S.
,
2020
, “
Modeling of Cutting Parameters and Tool Geometry for Multi-criteria Optimization of Surface Roughness and Vibration Via Response Surface Methodology in Turning of AISI 5140 Steel
,”
Materials (Basel)
,
13
(
19
), p.
4242
.
46.
Wang
,
B.
,
Liu
,
Z.
,
Cai
,
Y.
,
Luo
,
X.
,
Ma
,
H.
,
Song
,
Q.
, and
Xiong
,
Z.
,
2021
, “
Advancements in Material Removal Mechanism and Surface Integrity of High Speed Metal Cutting: A Review
,”
Int. J. Mach. Tools Manuf.
,
166
, p.
103744
.
47.
Szczotkarz
,
N.
,
Mrugalski
,
R.
,
Maruda
,
R. W.
,
Królczyk
,
G. M.
,
Legutko
,
S.
,
Leksycki
,
K.
,
Dębowski
,
D.
, and
Pruncu
,
C. I.
,
2021
, “
Cutting Tool Wear in Turning 316L Stainless Steel in the Conditions of Minimized Lubrication
,”
Tribol. Int.
,
156
, p.
106813
.
48.
Gökkaya
,
H.
, and
Nalbant
,
M.
,
2007
, “
The Effects of Cutting Tool Geometry and Processing Parameters on the Surface Roughness of AISI 1030 Steel
,”
Mater. Des.
,
28
(
2
), pp.
717
721
.
49.
Pottirayil
,
A.
,
Kailas
,
S. V.
, and
Biswas
,
S. K.
,
2010
, “
Experimental Estimation of Friction Force in Lubricated Cutting of Steel
,”
Wear
,
269
(
7–8
), pp.
557
564
.
50.
Kumar Sharma
,
A.
,
Kumar Tiwari
,
A.
,
Rai Dixit
,
A.
, and
Kumar Singh
,
R.
,
2020
, “
Measurement of Machining Forces and Surface Roughness in Turning of AISI 304 Steel Using Alumina-MWCNT Hybrid Nanoparticles Enriched Cutting Fluid
,”
Measurement
,
150
, p.
107078
.
You do not currently have access to this content.