Abstract

The cryogenic tribological performance of the pure graphite was investigated through experiments and molecular dynamics simulations in this study. As a brittle material, the pure graphite cooled by liquid nitrogen exhibited unexpected improvements in friction and wear characteristics. Hardness, X-ray diffraction (XRD), and transmission electron microscopy (TEM) tests at low temperatures were conducted to explore the underlying mechanisms. The Leeb hardness of the graphite at low temperature (665.3 HL) was 13.4% higher than at ambient temperature (586.5 HL). The TEM observations at −167 °C were conducted using commercially available cryo-electron microscopy, and the graphite specimens were fabricated using the focused ion beam technique. The XRD measurements at −130 °C were performed using a tester equipped with a liquid nitrogen circulation cooling system, and the graphite samples used were the same as those in the hardness tests. These test results indicated that the mechanical properties improved and interlayer spacing decreased due to the suppression of thermal atomic motions at low temperatures. Furthermore, a model consisting of a graphite substrate and a spherical diamond indenter was developed to conduct molecular dynamics simulations, and the AIREBO potential was employed to characterize the graphite substrate. The simulation results revealed a reduction of approximately 51.2% in thermal motion at low temperature. The reduced fluctuation range resulted in enhanced atomic interactions and made the carbon bonds less susceptible to rupture when stressed mechanically during sliding, which were the underlying microscopic mechanisms of improved cryogenic tribological performance of the pure graphite.

References

1.
Xue
,
R.
,
Wang
,
J.
,
Zeng
,
Y.
,
Zhang
,
N.
,
Zhang
,
Z.
,
Huang
,
S.
,
Xiao
,
Z.
, and
Xia
,
H.
,
2023
, “
Self-Lubrication Behavior of the Reaction-Formed Graphite/SiC Composites With Optimizing Graphite Content
,”
Wear
,
526–527
, p.
204946
.
2.
Xu
,
L.
,
Wu
,
J.
,
Yuan
,
X.
,
Hao
,
M.
,
Liu
,
F.
,
Liu
,
Y.
, and
Xie
,
X.
,
2023
, “
Influence of Inlet Pressure Disturbance on Transient Performance of Liquid Oxygen Lubricated Mechanical Seal and Rub-Impact Phenomenon Caused by Excitation Overload
,”
Tribol. Int.
,
178
(
Part A
), p.
108058
.
3.
Jia
,
Q.
,
Yuan
,
X.
,
Zhang
,
G.
,
Dong
,
G.
, and
Zhao
,
W.
,
2014
, “
Dry Friction and Wear Characteristics of Impregnated Graphite in a Corrosive Environment
,”
Chin. J. Mech. Eng.
,
27
(
5
), pp.
965
971
.
4.
Xie
,
F.
,
Li
,
Y.
,
Ma
,
Y.
,
Xia
,
S.
, and
Ren
,
J.
,
2020
, “
Cooling Behaviors of a Novel Flow Channel in Mechanical Seals of Extreme High-Speed Rotation for Cryogenic Rockets
,”
Cryogenics
,
107
, p.
103055
.
5.
Xu
,
J.
,
Li
,
C.
,
Miao
,
X.
,
Zhang
,
C.
, and
Yuan
,
X.
,
2020
, “
An Overview of Bearing Candidates for the Next Generation of Reusable Liquid Rocket Turbopumps
,”
Chin. J. Mech. Eng.
,
33
(
1
), p.
26
.
6.
Lance
,
A. D.
,
2016
, “
First Stage Recovery
,”
Engineering
,
2
(
2
), pp.
152
153
.
7.
Baiocco
,
P.
,
2021
, “
Overview of Reusable Space Systems With a Look to Technology Aspects
,”
Acta Astronaut.
,
189
, pp.
10
25
.
8.
Okayasu
,
A.
,
Ohta
,
T.
,
Kamijyo
,
A.
, and
Yamada
,
H.
,
2002
, “
Key Technology for Reusable Rocket Engine Turbopump
,”
Acta Astronaut.
,
50
(
6
), pp.
351
355
.
9.
Xu
,
L.
,
Wu
,
J.
,
Wang
,
Y.
,
Jia
,
Q.
,
Yan
,
G.
, and
Yuan
,
X.
,
2021
, “
A Novel Compound Mechanical Seal of Reusable Rocket Turbopump With Superconducting Magnetic Force Improving Lubrication and Stability
,”
Tribol. Int.
,
159
, p.
106989
.
10.
Xu
,
L.
,
Wu
,
J.
,
Wang
,
Y.
,
Rafique
,
F.
,
Xu
,
J.
, and
Yuan
,
X.
,
2022
, “
Lubrication and Stability Enhancement by Attaching Superconducting Magnetic Force on Non-Contacting Mechanical Seals for Reusable Rocket Turbopump
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
236
(
5
), pp.
892
907
.
11.
Zhao
,
W.
,
Zhang
,
S.
,
Chen
,
J.
, and
Wang
,
L.
,
2017
, “
Key Technologies of Dynamic-Hydrostatic Hybrid Seals Used in Liquid Oxygen Pump
,”
Lubr. Eng. (in Chinese)
,
42
, pp.
111
115
.
12.
Qi
,
H.
,
Wang
,
X.
,
Zhang
,
R.
,
Chen
,
Z.
,
Zheng
,
S.
,
Jiang
,
T.
, and
Xu
,
J.
,
2023
, “
Evaluation on Frictional Performance of Three Different Oil-Lubricated Impregnated Graphite Seal Rings for Aircraft Integrated Drive Generators
,”
Mater. Res. Express
,
10
(
11
), p.
115602
.
13.
Tang
,
W.
,
Wang
,
Y.
,
Zhu
,
X.
,
Zhang
,
Z.
,
Zhu
,
W.
,
Liu
,
H.
,
Gao
,
W.
, and
Li
,
Y.
,
2023
, “
Graphitic Carbon Nitride Quantum Dots as Novel and Efficient Friction-Reduction and Anti-Wear Additives for Water-Based Lubrication
,”
Wear
,
528–529
, p.
204950
.
14.
Huai
,
W.
,
Zhang
,
C.
, and
Wen
,
S.
,
2021
, “
Graphite-Based Solid Lubricant for High-Temperature Lubrication
,”
Friction
,
9
(
6
), pp.
1660
1672
.
15.
Song
,
H.
,
Chen
,
J.
,
Jiang
,
N.
,
Ji
,
L.
,
Li
,
H.
, and
Chen
,
J.
,
2020
, “
Low Friction and Wear Properties of Carbon Nanomaterials in High Vacuum Environment
,”
Tribol. Int.
,
143
, p.
106058
.
16.
Morstein
,
C. E.
,
Klemenz
,
A.
,
Dienwiebel
,
M.
, and
Moseler
,
M.
,
2022
, “
Humidity-Dependent Lubrication of Highly Loaded Contacts by Graphite and a Structural Transition to Turbostratic Carbon
,”
Nat. Commun.
,
13
(
1
), p.
5958
.
17.
Zhang
,
F.
,
Yin
,
P.
,
Zeng
,
Q.
, and
Wang
,
J.
,
2021
, “
Insights on the Formation Mechanism of Ultra-Low Friction of Phenolic Resin Graphite at High Temperature
,”
Coatings
,
12
(
1
), p.
6
.
18.
Liu
,
Y.
,
Wang
,
K.
,
Xu
,
Q.
,
Zhang
,
J.
,
Hu
,
Y.
,
Ma
,
T.
,
Zheng
,
Q.
, and
Luo
,
J.
,
2020
, “
Superlubricity Between Graphite Layers in Ultrahigh Vacuum
,”
ACS Appl. Mater. Interfaces
,
12
(
38
), pp.
43167
43172
.
19.
Zheng
,
C.
,
Zhang
,
C.
,
Sun
,
W.
,
Wang
,
W.
,
Liu
,
K.
, and
Xu
,
J.
,
2023
, “
Experiments and Molecular Dynamic Simulations on the Cryogenic Tribological Behaviors of Pure Silver in Liquid Nitrogen
,”
Tribol. Int.
,
188
, p.
108836
.
20.
Sápi
,
Z.
, and
Butler
,
R.
,
2020
, “
Properties of Cryogenic and Low Temperature Composite Materials-A Review
,”
Cryogenics
,
111
, p.
103190
.
21.
Lyu
,
Y.
,
Bergseth
,
E.
,
Wahlström
,
J.
, and
Olofsson
,
U.
,
2019
, “
A Pin-on-Disc Study on the Tribology of Cast Iron, Sinter and Composite Railway Brake Blocks at Low Temperatures
,”
Wear
,
424–425
, pp.
48
52
.
22.
Huang
,
Z.
,
Ren
,
Y.
,
Luo
,
D.
,
Zhou
,
Q.
,
He
,
Y.
, and
Wang
,
H.
,
2022
, “
Improved Wear Resistance of a Heterogeneous CoCrNi Medium-Entropy Alloy at Cryogenic Temperature
,”
Tribol. Lett.
,
70
(
4
), p.
96
.
23.
Wang
,
W.
,
Dietzel
,
D.
, and
Schirmeisen
,
A.
,
2020
, “
Single-Asperity Sliding Friction Across the Superconducting Phase Transition
,”
Sci. Adv.
,
6
(
12
), p.
eaay0165
.
24.
Fang
,
X.
, and
Yuan
,
S.
,
2022
, “
Innovation for Forming Aluminum Alloy Thin Shells at Ultra-Low Temperature by the Dual Enhancement Effect
,”
Int. J. Extreme Manuf.
,
4
(
3
), p.
033001
.
25.
Zhang
,
G.
,
Yan
,
X.
,
Zhang
,
Y.
,
Zhao
,
W.
, and
Chen
,
G.
,
2018
, “
Study on the Water-Lubricated High-Speed Non-Contact Mechanical Face Seal Supported by a Disc Spring
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
7
), p.
351
.
26.
Zhang
,
G.
,
Zhao
,
W.
,
Yan
,
X.
, and
Yuan
,
X.
,
2011
, “
A Theoretical and Experimental Study on Characteristics of Water-Lubricated Double Spiral-Grooved Seals
,”
Tribol. Trans.
,
54
(
11
), pp.
362
369
.
27.
Li
,
Y.
,
Brunetière
,
N.
,
Hao
,
M.
,
Li
,
T.
, and
Liu
,
F.
,
2022
, “
Experimental Study on Transient Frictional Features of Herringbone-Grooved Mechanical Face Seals in Start-Up and Stop Stages
,”
Tribol. Int.
,
175
, p.
107790
.
28.
Zhang
,
G.
,
Chen
,
G.
,
Zhao
,
W.
,
Yan
,
X.
, and
Zhang
,
Y.
,
2017
, “
An Experimental Test on a Cryogenic High-Speed Hydrodynamic Non-Contact Mechanical Seal
,”
Tribol. Lett.
,
65
(
3
), p.
80
.
29.
Zheng
,
C.
,
Fang
,
X.
,
Dou
,
H.
,
Wang
,
W.
,
Liu
,
K.
, and
Xu
,
J.
,
2024
, “
Role of Phenolic Resin in the Cryogenic Tribological Performance of Impregnated Graphite Cooled by Liquid Nitrogen
,”
Tribol. Int.
,
198
, p.
109929
.
30.
Iwasa
,
Y.
,
Ashaboglu
,
A. F.
,
Rabinowicz
,
E. R.
,
Tachibana
,
T.
, and
Kobashi
,
K.
,
1997
, “
Cryotribology of Diamond and Graphite
,”
Cryogenics
,
37
(
12
), pp.
801
805
.
31.
Zhao
,
Y.
,
Zhang
,
G.
,
Wang
,
Q.
,
Wang
,
H.
,
Zhao
,
W.
, and
Zeng
,
Q.
,
2024
, “
Tribological Properties of Low-Temperature Time-Dependent Pretreated Graphite for Mechanical Seal Pairs in High-Speed Turbopump
,”
Friction
,
12
(
2
), pp.
305
318
.
32.
Du
,
J.
,
Liu
,
N.
,
Zheng
,
C.
,
Zhang
,
F.
,
Gao
,
X.
,
Liu
,
K.
, and
Xu
,
J.
,
2023
, “
Development of a Novel Reciprocating Cryogenic Tribometer Through Deformations of Measurement Structure
,”
Rev. Sci. Instrum.
,
94
(
6
), p.
063908
.
33.
Khadem
,
M.
, and
Kim
,
D. E.
,
2021
, “
Friction and Wear Behaviors of Bare and Diamond-Like Carbon/Chromium Bi-Layer Coated SKH51 Steel at Low Temperatures
,”
Surf. Coat. Technol.
,
412
, p.
127018
.
34.
He
,
J.
,
Huang
,
G.
,
Wang
,
Y.
, and
Ke
,
L.
,
2024
, “
A Molecular Dynamics Study on the Adhesive Contact With Effect of Tangential Forces
,”
Tribol. Lett.
,
72
(
3
), p.
89
.
35.
Cui
,
W.
,
Chen
,
H.
,
Zhao
,
J.
,
Ma
,
Q.
,
Xu
,
Q.
, and
Ma
,
T.
,
2023
, “
Progresses on Cryo-Tribology: Lubrication Mechanisms, Detection Methods and Applications
,”
Int. J. Extreme Manuf.
,
5
(
2
), p.
022004
.
36.
Yang
,
C.
,
Liu
,
X.
,
Zhu
,
Z.
,
Zhou
,
A.
,
Zhou
,
H.
, and
Zhang
,
S.
,
2024
, “
Study of Tribological Property of Laser-Cladded FeCoCrNiMnx High-Entropy Alloy Coatings Via Experiment and Molecular Dynamics Simulation
,”
Tribol. Int.
,
191
, p.
109106
.
37.
Vilhena
,
J. G.
,
Pimentel
,
C.
,
Pedraz
,
P.
,
Luo
,
F.
,
Serena
,
P. A.
,
Pina
,
C. M.
,
Gnecco
,
E.
, and
Pérez
,
R.
,
2016
, “
Atomic-Scale Sliding Friction on Graphene in Water
,”
ACS Nano
,
10
(
4
), pp.
4288
4293
.
38.
Li
,
C.
,
Yu
,
Y.
,
Ding
,
Q.
,
Yang
,
L.
,
Liu
,
B.
, and
Bai
,
L.
,
2023
, “
Enhancement on Lubrication Performances of Water Lubricants by Multilayer Graphene
,”
Tribol. Lett.
,
72
(
1
), p.
5
.
39.
Sang
,
L. V.
,
2023
, “
Graphene Nanospheres and Their Mechanical and Tribological Responses
,”
Tribol. Int.
,
188
, p.
108853
.
40.
Zhou
,
Q.
,
Luo
,
D.
,
Hua
,
D.
,
Ye
,
W.
,
Li
,
S.
,
Zou
,
Q.
,
Chen
,
Z.
, and
Wang
,
H.
,
2022
, “
Design and Characterization of Metallic Glass/Graphene Multilayer With Excellent Nanowear Properties
,”
Friction
,
10
(
11
), pp.
1913
1926
.
41.
Li
,
W.
,
Hu
,
X.
,
Long
,
G.
,
Shang
,
A.
, and
Guo
,
B.
,
2023
, “
Grain Wear Properties and Grinding Performance of Porous Diamond Grinding Wheels
,”
Wear
,
530–531
, p.
204993
.
42.
Xu
,
Q.
,
Li
,
X.
,
Zhang
,
J.
,
Hu
,
Y.
,
Wang
,
H.
, and
Ma
,
T.
,
2017
, “
Suppressing Nanoscale Wear by Graphene/Graphene Interfacial Contact Architecture: A Molecular Dynamics Study
,”
ACS Appl. Mater. Interfaces
,
9
(
46
), pp.
40959
40968
.
43.
Talbot
,
J.
,
Tildesley
,
D. J.
, and
Steele
,
W. A.
,
1985
, “
Molecular-Dynamics Simulation of Fluid N2 Adsorbed on a Graphite Surface
,”
Faraday Discuss. Chem. Soc.
,
80
, pp.
91
105
.
44.
Gao
,
X.
,
Zhang
,
J.
,
Ju
,
P.
,
Liu
,
J.
,
Ji
,
L.
,
Liu
,
X.
,
Ma
,
T.
, et al
,
2020
, “
Shear-Induced Interfacial Structural Conversion of Graphene Oxide to Graphene at Macroscale
,”
Adv. Funct. Mater.
,
30
(
6
), p.
2004498
.
45.
Zheng
,
C.
,
Yang
,
Y.
,
Cheng
,
S.
,
Wang
,
W.
,
Liu
,
K.
, and
Xu
,
J.
,
2025
, “
Friction Reduction and Anti-Wear Mechanisms of Surface-Textured Graphite Under Water Lubrication
,”
Wear
,
562–563
, p.
205665
.
46.
Kim
,
M. G.
,
Kang
,
S. G.
,
Kim
,
C. G.
, and
Kong
,
C. W.
,
2007
, “
Tensile Response of Graphite/Epoxy Composites at Low Temperatures
,”
Compos. Struct.
,
79
(
1
), pp.
84
89
.
47.
Huang
,
X.
,
Li
,
T.
,
Wang
,
J.
,
Xia
,
K.
,
Tan
,
Z.
,
Peng
,
D.
,
Xiang
,
X.
,
Liu
,
B.
,
Ma
,
M.
, and
Zheng
,
Q.
,
2023
, “
Robust Microscale Structural Superlubricity Between Graphite and Nanostructured Surface
,”
Nat. Commun.
,
14
(
1
), p.
2931
.
48.
Zheng
,
B.
, and
Gu
,
G.
,
2019
, “
Tuning the Graphene Mechanical Anisotropy Via Defect Engineering
,”
Carbon
,
155
, pp.
697
705
.
49.
Torkaman-Asadi
,
M. A.
, and
Kouchakzadeh
,
M. A.
,
2022
, “
Atomistic Simulations of Mechanical Properties and Fracture of Graphene: A Review
,”
Comput. Mater. Sci.
,
210
, p.
111457
.
50.
Koren
,
E.
,
Lörtscher
,
E.
,
Rawlings
,
C.
,
Knoll
,
A. W.
, and
Duerig
,
U.
,
2015
, “
Adhesion and Friction in Mesoscopic Graphite Contacts
,”
Science
,
348
(
6235
), pp.
679
683
.
51.
Pastewka
,
L.
,
Pou
,
P.
,
Pérez
,
R.
,
Gumbsch
,
P.
, and
Moseler
,
M.
,
2008
, “
Describing Bond-Breaking Processes by Reactive Potentials: Importance of an Environment-Dependent Interaction Range
,”
Phys. Rev. B
,
78
(
16
), p.
161402
.
52.
Pastewka
,
L.
,
Klemenz
,
A.
,
Gumbsch
,
P.
, and
Moseler
,
M.
,
2013
, “
Screened Empirical Bond-Order Potential for Si-C
,”
Phys. Rev. B
,
87
(
20
), p.
205410
.
You do not currently have access to this content.